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One

Introduction

Qu’on me donne six lignes écrites de
la main du plus honnête homme, j’y
trouverai de quoi le faire pendre.1

Armand Jean du Plessis,
Cardinal de Richelieu

The concept of anonymity comes into play in those cases in which we want to
keep secret the identity of the agents participating to a certain event. There is a
wide range of situations in which this property may be needed or desirable; for
instance: voting, web surfing, anonymous donations, and posting on bulletin
boards.

Anonymity is often formulated in a more general way as an information-
hiding property, namely the property that a part of information relative to a
certain event is kept secret. One should be careful, though, not to confuse
anonymity with other properties that fit the same description, notably con-
fidentiality (aka secrecy). Let us emphasize the difference between the two
concepts with respect to sending messages: confidentiality refers to situations
in which the content of the message is to be kept secret; in the case of anony-
mity, on the other hand, it is the identity of the originator, or of the recipient,
that has to be kept secret. Analogously, in voting, anonymity means that the
identity of the voter associated with each vote must be hidden, and not the
vote itself or the candidate voted for. Other notable properties in this class
are privacy and non-interference. Privacy refers to the protection of certain
data, such as the credit card number of a user. Non-interference means that
a “low” user will not be able to acquire information about the activities of a
“high” user. A discussion about the difference between anonymity and other
information-hiding properties can be found in [HO03, HO05].

An important characteristic of anonymity is that it is usually relative to
the capabilities of the observer. In general the activity of a protocol can be
observed by diverse range of observers, differing in the information they have

1If one would give me six lines written by the hand of the most honest man, I would find
something in them to have him hanged.
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1. Introduction

access to. The anonymity property depends critically on what we consider
as observables. For example, in the case of an anonymous bulletin board, a
posting by one member of the group is kept anonymous to the other members;
however, it may be possible that the administrator of the board has access to
some privileged information that may allow him to infer the identity of the
member who posted it.

In general anonymity may be required for a subset of the agents only. In
order to completely define anonymity for a protocol it is therefore necessary to
specify which set(s) of members have to be kept anonymous. A further gener-
alization is the concept of anonymity with respect to a group: the members are
divided into a number of sets, and we are allowed to reveal to which group the
user responsible for the action belongs, but not the identity of the user himself.

Various formal definitions and frameworks for analyzing anonymity have
been developed in literature. They can be classified into approaches based on
process-calculi ([SS96, RS01]), epistemic logic ([SS99, HO03]), and “function
views” ([HS04]). Most of these approaches are based on the so-called “principle
of confusion”: a system is anonymous if the set of possible observable outcomes
is saturated with respect to the intended anonymous users. More precisely, if
in one computation the culprit (the user who performs the action) is i and the
observable outcome is o, then for every other agent j there must be a compu-
tation where j is the culprit and the observable is still o. This approach is also
called possibilistic, and relies on nondeterminism. In particular, probabilistic
choices are interpreted as nondeterministic. We refer to [RS01] for more details
about the relation of this approach to the notion of anonymity.

1.1 The probabilistic dimension

The possibilistic approach to anonymity, described in previous section, is ele-
gant and general, however it is limited in that it does not cope with quantitative
information. Now, several anonymity protocols use randomized primitives to
achieve the intended security properties. This is the case, for instance, of the
Dining Cryptographers [Cha88], Crowds [RR98], Onion Routing [SGR97], and
Freenet [CSWH00]. Furthermore, attackers may use statistical analyses to try
to infer the secret information from the observables. This is a common scenario
for a large class of security problems.

Another advantage of taking probabilistic information into account is that
it allows to classify various notions of anonymity according to their strength.
The possibilistic approaches to information hiding are rather coarse in this
respect, in the sense that they do not distinguish between the various levels
of leakage of probabilistic information. For instance, the notion of anonymity
that Reiter and Rubin call “possible innocence” [RR98] is satisfied whenever
the adversary cannot be absolutely certain of the identity of the culprit. This
is the weakest notion of anonymity. So, the possibilistic approach distinguishes
between the total lack of anonymity and “some” anonymity, but considers
equivalent all protocols that provide anonymity to some extent, from the least
to the maximum degree.

A very good example that demonstrates the need for a probabilistic analysis
of voting protocols is due to Di Cosmo ([DC07]). In this article, an old attacking
technique used in Italy twenty years ago is demonstrated, and it is shown that

2



The probabilistic dimension

protocols today still fail to cope with this simple attack. We briefly describe it
here: in the voting system used in Italy during the 70’s and 80’s, voters were
using the following voting procedure. They first had to choose a party. Then,
they could state their preferences by selecting a limited number of candidates
out of a long list proposed by the party, and writing them in the ballot in any
desirable order. Then a complex algorithm was used to determine the winner
of which the relevant part is that the party with more votes would have more
seats and, among the candidates of the same party, the one with the most
preferences would have more chances to get a seat.

Then the technique to break this system works as follows. The local boss
makes a visit to a sizable number of voters susceptible not to vote for his party,
accompanied by a couple of well built bodyguards. The boss gives to each
voter a specific sequence of candidates, in which he himself appears in the top
position, and asks the voter to vote for his party and mark this exact sequence
in the ballot. Given that the total number of candidates is big and voters can
state up to four preferences, there are enough combinations for the boss to
give a distinct sequence to each individual voter. Then the boss tells the voter
that if this specific sequence that was given to him doesn’t show up during
the counting of the ballots (a procedure which is of course performed publicly)
then a new visit will be made, an event quite unfortunate for the voter.

If the voter doesn’t comply, then there is still a chance that the voter
will escape the second visit, if it happens that someone else votes for the exact
sequence that was given by the boss. However, the probability of this to happen
is very low so the technique was quite effective for two decades, until the fraud
was revealed and the number of preferences was reduced to only one to avoid
this attack.

What is even more interesting, as shown in [DC07], is that even today,
voting protocols such as the Three Ballot protocol ([Riv06]) are vulnerable to
the same attack due to the high number of choices that are available to the
voter on the same ballot. Moreover, many anonymity definitions, like the one
proposed in [DKR06], fail to detect this problem and are satisfied by protocols
vulnerable to it. This example clearly demonstrates that, in order to cope
with subtle attacks like the one presented, we need a finer analysis involving
probabilistic models and techniques.

A probabilistic notion of anonymity was developed (as a part of a general
epistemological approach) in [HO03]. The approach there is purely proba-
bilistic, in the sense that both the protocol and the users are assumed to act
probabilistically. In particular the emphasis is on the probability of the users
being the culprit.

In this thesis we take the opposite point of view, namely we assume that we
may know nothing about the users and that the definition of anonymity should
not depend on the probabilities of the users performing the action of interest.
We consider this a fundamental property of a good notion of anonymity. In
fact, a protocol for anonymity should be able to guarantee this property for
every group of users, no matter what is their probability distribution of being
the culprit.

3



1. Introduction

1.2 Information theory

Recently it has been observed that at an abstract level information-hiding
protocols can be viewed as channels in the information-theoretic sense. A
channel consists of a set of input values A, a set of output values O and a
transition matrix which gives the conditional probability p(o|a) of producing o
in the output when a is the input. In the case of privacy preserving protocols, A
contains the information that we want to hide and O the facts that the attacker
can observe. This framework allows us to apply concepts from information
theory to reason about the knowledge that the attacker can gain about the
input by observing the output of the protocol.

In the field of information flow and non-interference there have been various
works [McL90, Gra91, CHM01, CHM05, Low02] in which the high information
and the low information are seen as the input and output respectively of a
(noisy) channel. Non-interference is formalized in this setting as the converse
of channel capacity.

Channel capacity has been also used in relation to anonymity in [MNCM03,
MNS03]. These works propose a method to create covert communication by
means of non-perfect anonymity.

A related line of work is [SD02, DSCP02], where the main idea is to express
the lack of (probabilistic) information in terms of entropy.

1.3 Hypothesis testing

In information-hiding systems the attacker finds himself in the following sce-
nario: he cannot directly detect the information of interest, namely the actual
value of the random variable A ∈ A, but he can discover the value of another
random variable O ∈ O which depends on A according to a known conditional
distribution. This kind of situation is quite common also in other disciplines,
like medicine, biology, and experimental physics, to mention a few. The at-
tempt to infer A from O is called hypothesis testing (the “hypothesis” to be
validated is the actual value of A), and it has been widely investigated in statis-
tics. One of the most used approaches to this problem is the Bayesian method,
which consists of assuming known the a priori probability distribution of the
hypotheses, and deriving from that (and from the matrix of the conditional
probabilities) the a posteriori distribution after a certain fact has been ob-
served. It is well known that the best strategy for the adversary is to apply the
MAP (Maximum Aposteriori Probability) criterion, which, as the name says,
dictates that one should choose the hypothesis with the maximum a posteriori
probability for the given observation. “Best” means that this strategy induces
the smallest probability of error in the guess of the hypothesis. The probability
of error, in this case, is also called Bayes risk.

A major problem with the Bayesian method is that the a priori distribution
is not always known. This is particularly true in security applications. In some
cases, it may be possible to approximate the a priori distribution by statistical
inference, but in most cases, especially when the input information changes
over time, it may not (see Section 1.4 for more discussion on this point). Thus
other methods need to be considered, which do not depend on the a priori
distribution. One such method is the one based on the so-called Maximum
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Likelihood criterion.

1.4 Interplay between nondeterminism and probabilities

We have already argued that the purely possibilistic approach, in the case of
probabilistic protocols, is too coarse and therefore not very useful. Here we
want to point out that in many cases the purely probabilistic approach is not
very suitable either, and that it is better to consider a setting in which both
aspects (probabilities and nondeterminism) are present. There are, indeed, two
possible sources of nondeterminism:

(1) The users of the protocol, who may be totally unpredictable and even
change over time, so that their choices cannot be quantified probabilisti-
cally, not even by repeating statistical observations1.

(2) The protocol itself, which can behave nondeterministically in part, due,
for instance, to the interleaving of the parallel components. In the fol-
lowing we will refer to the “scheduler” as an entity that determines the
interleaving.

The case (2) has some subtle implications, related to the fact that the tra-
ditional notion of scheduler may reveal the outcome of the protocol’s random
choices, and therefore the model of the adversary is too strong even for obvi-
ously correct protocols. In this case we would like to limit the power of the
scheduler and make him oblivious to this sensitive information. This issue is
one of the hot topics in security, it was for instance one of the main subject of
discussion at the panel of CSFW 2006.

1.5 Plan of the thesis - Contributions

The thesis is organized into three parts. In Part I a probabilistic framework
to model anonymity protocols is introduced. We use the framework to model
two basic anonymity properties, strong anonymity and probable innocence. In
Part II we focus on information theory and hypothesis testing. We model
protocols as noisy channels and use the notion of capacity to measure their
degree of anonymity. A general monotonicity principle for channels is developed
and its implications for binary channels are explored. In the case of hypothesis
testing a technique to obtain bounds of piecewise linear functions by considering
a finite set of points is developed and used in the case of the probability of error.
Finally, Part III deals with nondeterminism and the problem that arises if the
outcome of probabilistic choices is visible to the scheduler.

Apart from these three parts there are three introductory chapters, the first
being the present introduction. Chapter 2 introduces some preliminary notions
used throughout the thesis. Chapter 3 provides an introduction to anonymity

1Some people consider nondeterministic choice as a probabilistic choice with unknown
probabilities. Our opinion is that the two concepts are different: the notion of probability
implies that we can gain knowledge of the distribution by repeating the experiment under
the same conditions and by observing the frequency of the outcomes. In other words, from
the past we can predict the future. This prediction element is absent from the notion of
nondeterminism.

5



1. Introduction

systems. A discussion of anonymity properties is made and two anonymity
protocols, serving as running examples throughout the thesis, are presented.

We now summarize each one of the three main chapters in greater detail.

Part I - Probabilistic approach

In Chapter 4 we describe the general probabilistic framework that is used to
model anonymity protocols and we give the definition of an anonymity system
and an anonymity instance. This framework is used in all subsequent chapters.
In Chapter 5 we give a definition of strong anonymity and we show that the
Dining Cryptographers protocol satisfies it under the assumption of fair coins.
The case of protocol repetition is also considered, showing that if a protocol is
strongly anonymous then any repetition of it is also strongly anonymous.

Chapter 6 contains most of the results of the first part. We examine two
formal definitions of probable innocence and show cases in which they do not
express the intuition behind this anonymity notion. We then combine the two
definitions into a new one that is equivalent to them under certain conditions
but that overcomes their shortcomings in the general case. Using the new
definition is it shown that a repetition of a protocol unboundedly many times
satisfies strong anonymity if and only if the protocol is strongly anonymous.
The new definition is also applied to Dining Cryptographers, obtaining suf-
ficient and necessary conditions on various kinds of network graphs, and to
Crowds giving an alternative proof for its conditions for probable innocence.

Part II - Information theory and hypothesis testing

This part is the largest of the three in terms of material and new results.
In Chapter 7 a quantitative measure of anonymity is proposed, based on the
concept of capacity, and an extended notion of capacity is developed to deal
with situations where some information is leaked by design. A compositionality
result is shown for the latter case, and also a method to compute the capacity
in the presence of certain symmetries. Then the relation of this measure with
existing anonymity properties is examined, in particular with the ones of Part
I. Applying the new measure to the Dining Cryptographers protocol we show
that the anonymity always improves when we add an edge to any network
graph. This result also allows us to give sufficient and necessary conditions for
strong anonymity. Finally a model-checking approach is demonstrated in both
the Dining Cryptographers and Crowds, calculating their degree of anonymity
while varying some parameters of the protocol.

In Chapter 8 we focus on channels and we develop a monotonicity principle
for capacity, based on its convexity as a function of the channel matrix. We
then use this principle to show a number of results for binary channels. First
we develop a new partial order for algebraic information theory with respect
to which capacity is monotone. This order is much bigger than the interval
inclusion order and can be characterized in three different ways: with a simple
formula, geometrically and algebraically. Then we establish bounds on the
capacity based on easily computable functions. We also study its behavior
along lines of constant capacity leading to graphical methods for reasoning
about capacity that allow us to compare channels in “most” cases.

In Chapter 9 we consider the probability of error in the case of hypoth-
esis testing using the maximum a posteriori probability rule. We first show

6
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how to obtain bounds for functions that are convexly generated by a subset
of their points. We use this result to give a simple alternative proof of two
known bounds for the probability of error from the literature. Then we show
that the probability of error is convexly generated by a finite set of points,
depending only on the matrix of the channel, and we give a characterization
of these points. We use this result to improve the previous bounds and obtain
new ones that are tight in at least one point. This technique is demonstrated
in an instance of the Crowds protocol using model-checking methods. Finally
we consider hypothesis testing in the case of protocol repetition using the max-
imum likelihood rule, showing that given enough observations this rule can
simulate the MAP rule, and providing bounds for the probability of error in
various cases.

Part III - Adding nondeterminism

In Chapter 10 we consider a problem that arises in the analysis of probabilistic
security protocols in the presence of nondeterminism. Namely, if the sched-
uler is unrestricted then it could reveal the outcome of probabilistic choices by
basing its decisions on them. We develop a solution to this problem in terms
of a probabilistic extension of CCS with a syntactic scheduler. The scheduler
uses labels to guide the execution of the process. We show that using pair-
wise distinct labels the syntactic scheduler has all the power of the semantic
one. However, by using multiple copies of the same label we can effectively
limit the power of the scheduler and make it oblivious to certain probabilis-
tic choices. We also study testing preorders for this calculus and show that
they are precongruences wrt all operators except + and that, using a proper
labeling, probabilistic choice distributes over all operators except !. Finally we
apply the new calculus to the dining cryptographers problem in the case that
the order of the announcements is chosen nondeterministically. We show that
in this case the protocol is strongly anonymous if the decision of the master
and the outcome of the coins are invisible to the scheduler. We also study a
variant of the protocol with a nondeterministic master.

In Chapter 11 we study a probabilistic contract-signing protocol, namely
the Partial Secrets Exchange protocol. We model the protocol in the calculus
of Chapter 11 and we also create a specification expressing its correct behavior.
We prove the correctness of the protocol by showing that it is related to the
specification under the may-testing preorder. The proof of this result uses the
distributivity of the probabilistic sum in the calculus of Chapter 11, showing
its use for verification.

1.6 Publications

Many of the results in this thesis have been published in journals or in the pro-
ceedings of conferences or workshops. More specifically, the results of Chapter 6
appeared in [CP06a] and an extended version was published in [CP06b]. Some
of the results in Chapter 7 appeared in [CPP06] and an extended version was
published in [CPP07a]. The results of Chapter 8 are in preparation for publi-
cation ([CM07]). The results of Chapter 9 appeared in [CPP07b], an extended
journal version is under preparation. The results of Chapter 10 appeared in
[CP07]. The results of Chapter 11 appeared in [CP05a] and an extended ver-
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sion was published in [CP05b]. Finally, some of the material of Chapter 3
appeared in [CC05].
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Two

Preliminaries

In this chapter we give a brief overview of the technical concepts from literature
that will be used through the thesis.

2.1 Probability spaces

We recall here some basic notion of Probability Theory.
Let Ω be a set. A σ-field over Ω is a collection F of subsets of Ω closed

under complement and countable union and such that Ω ∈ F . If F is only
closed under finite union then it is a field over Ω. If U is a collection of subsets
of Ω then the σ-field generated by U is defined as the intersection of all σ-fields
containing U (note that there is at least one since the powerset of Ω is a σ-field
containing U).

A measure on F is a function µ : F 7→ [0,∞] such that

1. µ(∅) = 0 and

2. µ(
⋃
i Ci) =

∑
i µ(Ci) where Ci is a countable collection of pairwise dis-

joint elements of F .

A probability measure on F is a measure µ on F such that µ(Ω) = 1. A
probability space is a tuple (Ω,F , µ) where Ω is a set, called the sample space,
F is a σ-field on Ω and µ is a probability measure on F .

A probability space and the corresponding probability measure are called
discrete if F = 2Ω and

µ(C) =
∑
x∈C

µ({x}) ∀C ∈ F

In this case, we can construct µ from a function p : Ω 7→ [0, 1] satisfying∑
x∈Ω p(x) = 1 by assigning µ({x}) = p(x). The function p is called a proba-

bility distribution over Ω.
The set of all discrete probability measures with sample space Ω will be

denoted by Disc(Ω). We will also denote by δ(x) (called the Dirac measure on
x) the probability measure s.t. µ({x}) = 1.

The elements of a σ-field F are also called events. If A,B are events then
A∩B is also an event. If µ(A) > 0 then we can define the conditional probability

9
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p(B|A), meaning “the probability of B given that A holds”, as

p(B|A) =
µ(A ∩B)
µ(A)

Note that p(·|A) is a new probability measure on F . In continuous probability
spaces, where many events have zero probability, it is possible to generalize
the concept of conditional probability to allow conditioning on such events.
However, this is not necessary for the needs of this thesis. Thus we will use the
“traditional” definition of conditional probability and make sure that we never
condition on events of zero probability.

Let F ,F ′ be two σ-fields on Ω,Ω′ respectively. A random variable X is
a function X : Ω 7→ Ω′ that is measurable, meaning that the inverse of every
element of F ′ belongs to F :

X−1(C) ∈ F ∀C ∈ F ′

Then given a probability measure µ on F , X induces a probability measure µ′

on F ′ as
µ′(C) = µ(X−1(C)) ∀C ∈ F ′

If µ′ is a discrete probability measure then it can be constructed by a
probability distribution over Ω′, called probability mass function (pmf), defined
as P ([X = x]) = µ(X−1(x)) for each x ∈ Ω′. The random variable in this case
is called discrete. If X,Y are discrete random variables then we can define a
discrete random valuer (X,Y ) by its pmf P ([X = x, Y = y]) = µ(X−1(x) ∩
X−1(y)). If X is a real-valued discrete random variable then its expected value
(or expectation) is defined as

EX =
∑
i

xi P ([X = xi])

Notation: We will use capital letters X,Y to denote random variables and
calligraphic letters X ,Y to denote their image. With a slight abuse of notation
we will use p (and p(x), p(y)) to denote either

• a probability distribution, when x, y ∈ Ω, or

• a probability measure, when x, y ∈ F are events, or

• the probability mass function P ([X = x]), P ([Y = y]) of the random
variables X,Y respectively, when x ∈ X , y ∈ Y.

2.2 Information theory

Information theory reasons about the uncertainty of a random variable and the
information that it can reveal about another random variable. In this section
we recall the notions of entropy, mutual information and channel capacity, we
refer to [CT91] for more details. We consider only the discrete case since it is
enough for the scope of this thesis.

10
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Let X be a discrete random variable with image X and pmf p(x) = P ([X =
x]) for x ∈ X . The entropy H(X) of X is defined as

H(X) = −
∑
x∈X

p(x) log p(x)

The entropy measures the uncertainty of a random variable. It takes its maxi-
mum value log |X | when X’s distribution is uniform and its minimum value 0
when X is constant. We usually take the logarithm with base 2 and measure
entropy in bits. Roughly speaking, m bits of entropy means that we have 2m

values to choose from, assuming a uniform distribution.
The relative entropy or Kullback–Leibler distance between two probability

distributions p, q on the same set X is defined asD(p ‖ q) =
∑
x∈X p(x) log p(x)

q(x) .
It is possible to show that D(p ‖ q) is always non-negative, and it is 0 if and
only if p = q.

Now let X,Y be random variables. The conditional entropy H(X|Y ) is

H(X|Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y)

Conditional entropy measures the amount of uncertainty ofX when Y is known.
It can be shown that 0 ≤ H(X|Y ) ≤ H(X). It takes its maximum value H(X)
when Y reveals no information about X, and its minimum value 0 when Y
completely determines the value of X.

Comparing H(X) and H(X|Y ) gives us the concept of mutual information
I(X;Y ), which is defined as

I(X;Y ) = H(X)−H(X|Y )

or equivalently

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(2.1)

Mutual information measures the amount of information that one random vari-
able contains about another random variable. In other words, it measures the
amount of uncertainty about X that we lose when observing Y . It can be shown
that it is symmetric (I(X;Y ) = I(Y ;X)) and that 0 ≤ I(X;Y ) ≤ H(X).

A communication channel is a tuple (X ,Y, pc) where X ,Y are the sets
of input and output symbols respectively and pc(y|x) is the probability of
observing output y ∈ Y when x ∈ X is the input. Given an input distribution
p(x) over X we can define the random variables X,Y for input and output
respectively. The maximum mutual information between X and Y over all
possible distributions p(x) is known as the channel’s capacity.

C = max
p(x)

I(X;Y )

The capacity of a channel gives the maximum rate at which information can
be transmitted using this channel.

2.3 Convexity

Let R be the set of real numbers. The elements λ1, λ2, . . . , λk ∈ R constitute a
set of convex coefficients iff ∀i λi ≥ 0 and

∑
i λi = 1.

11
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Let V be a vector space over R. A convex combination of ~x1, ~x2, . . . , ~xk ∈ V
is a vector of the form

~x =
∑
i

λi ~xi

where the λi’s are convex coefficients. A subset S of V is convex iff every
convex combination of vectors in S is also in S. Given a subset S of V , the
convex hull of S, denoted by ch(S), is the smallest convex set containing S.
Since the intersection of convex sets is convex, it is clear that ch(S) always
exists.

A function f : S → R defined on a convex set S is convex iff

f(
∑
i

λi ~xi) ≤
∑
i

λi f(~xi) ∀x1, . . . , xk ∈ S

where the λi’s are convex coefficients. A function is strictly convex if, assuming
pairwise distinct ~xi’s, equality (in the above inequality) holds iff λi = 1 for
some i. A function f is (strictly) concave if −f is (strictly) convex. If X is
a real-valued random variable and f is convex, then Jensen’s inequality states
that

Ef(X) ≤ f(EX)

where E denotes the expected value. If f is concave then the inequality is
reversed.

2.4 Simple probabilistic automata

We recall here some basic notions about probabilistic automata, following the
settings of [Seg95].

A simple probabilistic automaton1 is a tuple (S, q,A,D) where S is a set of
states, q ∈ S is the initial state, A is a set of actions and D ⊆ S×A×Disc(S)
is a transition relation. Intuitively, if (s, a, µ) ∈ D then there is a transition
from the state s performing the action a and leading to a distribution µ over
the states of the automaton. We also write s a−→ µ if (s, a, µ) ∈ D. The idea
is that the choice of transition among the available ones in D is performed
nondeterministically, and the choice of the target state among the ones allowed
by µ (i.e. those states q such that µ(q) > 0) is performed probabilistically. A
probabilistic automaton M is fully probabilistic if from each state of M there
is at most one transition available.

An execution fragment α of a probabilistic automaton is a (possibly infinite)
sequence s0a1s1a2s2 . . . of alternating states and actions, such that for each i
there is a transition (si, ai+1, µi) ∈ D and µi(si+1) > 0. The concatenation
of a finite execution fragment α1 = s0 . . . ansn and an execution fragment
α2 = snan+1sn+1 . . . is the execution fragment α1·α2 = s0 . . . ansnan+1sn+1 . . ..
A finite execution fragment α1 is a prefix of α, written α1 ≤ α, if there is an
execution fragment α2 such that α = α1 · α2. We will use fstate(α), lstate(α)
to denote the first and last state of a finite execution fragment α respectively.
An execution is an execution fragment such that fstate(α) = q. An execution

1For simplicity in the following we will refer to a simple probabilistic automaton as
probabilistic automaton. Note however that simple probabilistic automata are a subset of
the probabilistic automata defined in [Seg95, SL95].
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α is maximal if it is infinite or there is no transition from lstate(α) in D.
We denote by exec∗(M) and exec(M) the sets of all the finite and of all the
executions of M respectively.

A scheduler of a probabilistic automaton M = (S, q,A,D) is a function

ζ : exec∗(M)→ D

such that ζ(α) = (s, a, µ) ∈ D implies that s = lstate(α). The idea is that a
scheduler selects a transition among the ones available in D and it can base its
decision on the history of the execution.

The execution tree of M relative to the scheduler ζ, denoted by etree(M, ζ),
is a fully probabilistic automaton M ′ = (S′, q′, A′,D′) such that S′ ⊆ exec(M),
q′ = q, A′ = A, and (α, a, µ′) ∈ D′ if and only if ζ(α) = (lstate(α), a, µ) for
some µ and µ′(αas) = µ(s). Intuitively, etree(M, ζ) is produced by unfolding
the executions of M and resolving all nondeterministic choices using ζ. Note
that etree(M, ζ) is a simple2 and fully probabilistic automaton.

Given a fully probabilistic automaton M = (S, q,A,D) we can define a
probability space (ΩM ,FM , PM ) on the space of executions of M as follows:

• ΩM ⊆ exec(M) is the set of maximal executions of M .

• If α is a finite execution of M we define the cone with prefix α as Cα =
{α′ ∈ ΩM |α ≤ α′}. Let CM be the collection of all cones of M . Then F is
the σ-field generated by CM (by closing under complement and countable
union).

• We define the probability of a cone Cα where α = s0a1s1 . . . ansn as

P (Cα) =
n∏
i=1

µi(si)

where µi is the (unique because the automaton is fully probabilistic)
measure such that (si−1, ai, µi) ∈ D. We define PM as the measure
extending P to F (see [Seg95] for more details about this construction).

Now we define the probability space (ΩT ,FT , PT ) on the traces of a fully
probabilistic automaton M . Let ext(M) ⊆ A be the set of external actions of
M . We define ΩT = ext(M)∗∪ext(M)ω to be the set of finite and infinite traces
of M and FT to be the σ-field generated by the cones Cβ for all β ∈ ext(M)∗.
Let f : ΩM 7→ ΩT be a function that assigns to each execution its trace. We
can show that f is measurable, and we define PT as the measure induced by
f : PT (E) = PM (f−1(E)) ∀E ∈ FT .

Finally, given a simple probabilistic automaton M and a scheduler ζ for
M , we can define a probability space on the set traces of M by using the same
construction on etree(M, ζ), which is a fully probabilistic automaton.

Bisimulation The notion of bisimulation, originally defined for transition
systems by Park [Par81], became very popular in Concurrency Theory after

2This is true because we do not consider probabilistic schedulers. If we considered such
schedulers then the execution tree would no longer be a simple automaton.
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Milner used it as one of the fundamental notions in his Calculus of Communi-
cating Systems [Mil89]. In the probabilistic setting, an extension of this notion
was first proposed by Larsen and Skou [LS91]. Later, many variants were in-
vestigated, for various probabilistic models. We recall here the definition of
(probabilistic) bisimulation, tailored to probabilistic automata.

If R is an equivalence relation over a set S, then we can lift the relation to
probability distributions over S by considering two distributions related if they
assign the same probability to the same equivalence classes. More formally
two distributions µ1, µ2 are equivalent, written µ1Rµ2, iff for all equivalence
classes E ∈ S/R, µ1(E) = µ2(E).

Let (S, q,A,D) be a probabilistic automaton. An equivalence relation R ⊆
S × S is a strong bisimulation iff for all s1, s2 ∈ S and for all a ∈ A
• if s1

a−→ µ1 then there exists µ2 such that s2
a−→ µ2 and µ1Rµ2,

• if s2
a−→ µ2 then there exists µ1 such that s1

a−→ µ1 and µ1Rµ2.

We write s1 ∼ s2 if there is a strong bisimulation that relates them.

2.5 CCS with internal probabilistic choice

In this section we present an extension of standard CCS ([Mil89]) obtained
by adding internal probabilistic choice. The resulting calculus can be seen as
a simplified version of the probabilistic π-calculus presented in [HP00, PH05]
and it is similar to the one considered in [DPP05]. The restriction to CCS and
to internal choice is suitable for the scope of this thesis.

Let a range over a countable set of channel names. The syntax of CCSp is
the following:

α ::= a | ā | τ prefixes

P,Q ::= processes

α.P prefix

| P | Q parallel

| P +Q nondeterministic choice

| ∑i piPi internal probabilistic choice

| (νa)P restriction

| !P replication

| 0 nil

where the pi’s in the probabilistic choice should be non-negative and their sum
should be 1. We will also use the notation P1 +p P2 to represent a binary sum∑
i piPi with p1 = p and p2 = 1− p.
The semantics of a CCSp term is a probabilistic automaton defined induc-

tively on the basis of the syntax according to the rules in Figure 2.1. We write
s

a−→ µ when (s, a, µ) is a transition of the probabilistic automaton. Given
a process Q and a measure µ, we denote by µ | Q the measure µ′ such that
µ′(P | Q) = µ(P ) for all processes P and µ′(R) = 0 if R is not of the form
P | Q. Similarly (νa)µ = µ′ such that µ′((νa)P ) = µ(P ).
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CCS with internal probabilistic choice

ACT
α.P

α−→ δ(P )
RES P

α−→ µ α 6= a, a

(νa)P α−→ (νa)µ

SUM1 P
α−→ µ

P +Q
α−→ µ

SUM2 Q
α−→ µ

P +Q
α−→ µ

PAR1
P

α−→ µ

P | Q α−→ µ | Q PAR2
Q

α−→ µ

P | Q α−→ P | µ

COM P
a−→ δ(P ′) Q

a−→ δ(Q′)
P | Q τ−→ δ(P ′ | Q′) PROB ∑

i piPi
τ−→∑

i pi δ(Pi)

REP1 P
α−→ µ

!P α−→ µ | !P REP2 P
a−→ δ(P1) P

a−→ δ(P2)
!P τ−→ δ(P1 | P2 | !P )

Figure 2.1: The semantics of CCSp.

A transition of the form P
a−→ δ(P ′), i.e. a transition having for target a

Dirac measure, corresponds to a transition of a non-probabilistic automaton (a
standard labeled transition system). Thus, all the rules of CCSp imitate the
ones of CCS except from PROB. The latter models the internal probabilistic
choice: a silent τ transition is available from the sum to a measure containing
all of its operands, with the corresponding probabilities.

Note that in the produced probabilistic automaton, all transitions to non-
Dirac measures are silent. This is similar to the alternating model [HJ89],
however our case is more general because the silent and non-silent transitions
are not necessarily alternated. On the other hand, with respect to the simple
probabilistic automata the fact that the probabilistic transitions are silent looks
like a restriction. However, it has been proved by Bandini and Segala [BS01]
that the simple probabilistic automata and the alternating model are essentially
equivalent, so, being in between, our model is equivalent as well.
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Three

Anonymity Systems

Anonymity is a general notion that arises in activities where the users involved
in them wish to keep their identity secret. This chapter provides an introduc-
tion to anonymity systems. First, we give a brief discussion about the variety
of anonymity notions and their classification. Then, two well-known anony-
mity protocols from the literature, namely the Dining Cryptographers and
Crowds, are presented and their anonymity guarantees are discussed. These
protocols serve as running examples throughout the thesis. Finally, we give a
brief presentation of various other anonymity protocols, to give an overview of
the various designs used for anonymity.

The discussion in this chapter is informal. A formal definition of anony-
mity systems is given in Chapter 4. The formalization of various anonymity
properties is the topic of Chapters 5, 6 and 7.

3.1 Anonymity properties

Due to the generic nature of the term, anonymity does not refer to a uniquely
defined notion or property. On the contrary, it describes a broad family of
properties with the common feature, generally speaking, that they try to hide
the relationship between an observable action (for example, a message sent
across a public network) and the identity of the users involved with this action
or some other sensitive event that we want to keep private. When we analyze
an anonymous system we must define this notion more precisely by answering
questions like: “Which identity do we want to hide?”, “From whom?” and
“To what extent?”. The answers to these questions lead to different notions of
anonymity.

Even though anonymity protocols can vary a lot in nature, the main agents
involved in an anonymity protocol are usually the sender, who initiates an
action, for example sends a message, and the receiver who receives the message
and responds accordingly. Since a direct communication between two users is
usually exposed, in most protocols these agents are communicating through a
number of nodes that participate in the protocol, for example by forwarding
messages and routing back the replies.

It is worth noting that in the attacker model usually used in the analysis of
anonymity systems, the above attacker agents can intercept messages routed
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through them, they can send messages to other users, but they cannot intercept
messages sent to other members, which is allowed, for example, in the so-called
Dolev-Yao model. The reason is that an attacker who can see the whole network
is too powerful, leading to the collapse of the anonymity in most of the discussed
systems. An attacker with these capabilities is called a global attacker

Based on the involved agents we have the following notions of anonymity.

• Sender anonymity to a node, to the receiver or to a global attacker.

• Receiver anonymity to any node, to the sender or to a global attacker.

• Sender-responder unlinkability to any node or a global attacker. This
means that a node may know that A sent a message and B received one,
but not that A’s message was actually received by B.

Moreover, we could consider an attacker that is a combination of a global
attacker, sender, receiver and any number of nodes inside the system, or other
variations. Pfitzmann and Hanse [PK04] provide an extended discussion on
this topic.

Considering the level of anonymity provided by a system, Reiter and Rubin
[RR98] provide the following useful classification:

Beyond suspicion
From the attacker’s point of view, a user appears no more likely to be the
originator of the message than any other potential user in the system.

Probable innocence
From the attacker’s point of view, a user appears no more likely to be
the originator of the message than to not be the originator.

Possible innocence
From the attacker’s point of view, there is a non-negligible probability
that the originator is someone else.

The above properties are in decreasing order of strength with each one
implying the ones below. Beyond suspicion states that no information about
the user can be revealed to the attacker. Probable innocence allows the attacker
to suspect a user with higher probability that the others, but gives to the user
the right to “plead innocent” in the sense that it is more probable that he did
not send the message than that he did. Finally, possible innocence is much
weaker, it only requires that the user is not totally exposed.

3.2 Anonymity protocols

3.2.1 Dining Cryptographers

This protocol, proposed by Chaum in [Cha88], is arguably the most well-known
anonymity protocol in the literature. It is one of the first anonymity proto-
cols ever studied and one of the few that offers strong anonymity (defined in
Chapter 5) through the use of a clever mechanism.

The protocol is usually demonstrated in a situation where three cryptog-
raphers are dining together with their master (usually the National Security
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Figure 3.1: The Dining Cryptographers protocol

Agency). At the end of the dinner, each of them is secretly informed by the
master whether he should pay the bill or not. So, either the master will pay,
or he will ask one of the cryptographers to pay. The cryptographers, or some
external observer, would like to find out whether the payer is one of them or the
master. However, if the payer is one of them, they also wish to maintain the
anonymity of the identity of the payer. Of course, we assume that the master
himself will not reveal this information, and also we want the solution to be
distributed, i.e. communication can be achieved only via message passing, and
there is no central memory or central coordinator which can be used to find
out this information.

The Dining Cryptographers protocol offers a solution to this problem. Each
cryptographer tosses a coin which is visible to himself and to his neighbor to
the right, as shown in Figure 3.1. Each cryptographer then observes the two
coins that he can see, and announces agree or disagree. If a cryptographer is
not paying, he will announce agree if the two sides are the same and disagree
if they are not. However, if he is paying then he will say the opposite. It can
be proved that if the number of disagrees is even, then the master is paying;
otherwise, one of the cryptographers is paying. Furthermore, if one of the
cryptographers is paying, then neither an external observer nor the other two
cryptographers can identify, from their individual information, who exactly is
paying, assuming that the coins are fair.

The protocol can be easily generalized to an arbitrary number of cryptog-
raphers on an arbitrary connection graph, communicating any kind of data.
In the general setting, each connected pair of cryptographers share a common
secret (the value of the coin) of length n, equal to the length of the transmitted
data. The secret is assumed to be drawn uniformly from its set of possible val-
ues. Then each user computes the XOR of all its shared secrets and announces
publically the sum. The user who wants to transmit data adds also the data
to the sum. Then the sum of all announcements is equal to the transmitted
data, since all secrets are added twice, assuming that there is only one sender
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at the same time. A group of users might collaborate to expose the identity
of the sender or, in general, any subset of the secrets might be revealed by
any means. After removing the edges corresponding to the revealed secrets, it
can be shown that the protocol offers strong anonymity among the connected
component of the graph to which the sender belongs, assuming that all coins
are fair. That is, the attacker can detect to which connected component the
sender belongs but he can gain no more information about which member of
the component is the actual sender.

However, these almost perfect anonymity properties come at a cost which, in
the case of the Dining Cryptographers, is the low efficiency of the protocol. All
users need to communicate at the same time in order to send just one message,
thus the protocol can be used only in a relatively small scale. Moreover, if
more than one users needs to transmit at the same time then some kind of
coordination mechanism is needed to avoid conflicts or detect them and resend
the corresponding messages.

The Dining Cryptographers is used as a running example in many parts of
this thesis and some interesting new results are also obtained. In Chapter 5 a
formal definition of strong anonymity is given and the original proof of Chaum
is reproduced, showing that the protocol satisfies strong anonymity in any
connected network graph, assuming that the coins are fair. In Chapter 6 the
case of unfair coins is considered, where strong anonymity no longer holds. In
this case, sufficient and necessary conditions are given for a weaker anonymity
property, namely probable innocence, for various kinds of network graphs.

In Chapter 7 we consider the case where a new edge (that is a new coin)
is added to the graph. We show that for all graphs and any probabilities of
the coins this operation strengthens the anonymity of the system, a property
expressed in terms of strong anonymity, probable innocence and the quanti-
tative measure of anonymity proposed in the same chapter. Moreover, it is
shown that strong anonymity can hold even in the presence of unfair coins
and a sufficient and necessary condition is given: an instance of the Dining
Cryptographers is strongly anonymous if and only if its graph has a span-
ning tree consisting only of fair coins. Also in Chapter 7, we demonstrate a
model-checking approach and show how to compute the degree of anonymity
of the protocol automatically, obtaining a graph of the degree of anonymity as
a function of the probability of the coins.

Finally, in Chapter 10 we consider the case where the cryptographers can
make their announcements in any order and this order is selected nondetermin-
istically. We extend the notion of strong anonymity to the nondeterministic
setting and show that it holds for the Dining Cryptographers only if the sched-
uler’s choices do not depend on the coins or on the selection of the master. An
analysis of the protocol with a nondeterministic master is also performed.

3.2.2 Crowds

This protocol, presented in [RR98], allows Internet users to perform web trans-
actions without revealing their identity. When a user communicates with a web
server to request a page, the server can know from which IP address the request
was initiated. The idea, to obtain anonymity, is to randomly route the request
through a crowd of users. The routing protocol ensures that, even when a user
appears to send a message, there is a substantial probability that he is simply
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Figure 3.2: The Crowds protocol

forwarding it for somebody else.
More specifically a crowd is a group of m users who participate in the

protocol. Some of the users may be corrupted which means they can collaborate
in order to reveal the identity of the originator. Let c be the number of such
users and pf ∈ (0, 1] a parameter of the protocol. When a user, called the
initiator or originator, wants to request a web page he must create a path
between him and the server. This is achieved by the following process, also
displayed in Figure 3.2.

• The initiator selects randomly a member of the crowd (possibly himself)
and forwards the request to him. We will refer to this latter user as the
forwarder.

• A forwarder, upon receiving a request, flips a biased coin. With probabil-
ity 1− pf he delivers the request directly to the server. With probability
pf he selects randomly, with uniform probability, a new forwarder (possi-
bly himself) and forwards the request to him. The new forwarder repeats
the same procedure.

The response from the server follows the same route in the opposite direction to
return to the initiator. Moreover, all communication in the path is encrypted
using a path key, mainly to defend against local eavesdroppers (see [RR98] for
more details).

Each user is considered to have access only to the traffic routed through
him, so he cannot intercept messages addressed to other users. With respect to
the web server the protocol offers strong anonymity. This is ensured by the fact
that the initiator never sends the message directly to the server, there is at least
one step of forwarding. After this step the message will be in possession of any
user with equal probability. As a consequence, the last user in the path, that
is the one observed by the web server, can be anyone with equal probability,
thus the web server can gain no information about the identity of the initiator.

The more interesting case, however, is the anonymity wrt a corrupted user
that participates in the protocol. In this case, the initiator might try to forward
the message to the attacker, so the latter can gain more information than the
end server. We say that a user is detected if he sends a message to a corrupted
user. Then it is clear that the initiator, since he always appears in a path, is
more likely to be detected than the rest of the users. Thus detecting a user
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increases his probability of being the initiator, so strong anonymity cannot
hold. However, if the number of corrupted users is not too big, the protocol
can still satisfy probable innocence, meaning that the detected user is still less
likely to be the originator than all the other users together, even though he
is more likely than each other user individually. In [RR98] it is shown that
Crowds satisfies probable innocence if m ≥ pf

pf−1/2 (c+ 1).
Crowds is also used as a running example in many various parts of the thesis.

In Chapter 6 a formal definition of probable innocence is given, combining the
features of two existing definitions from the literature. Using the new definition
an alternative proof of probable innocence for Crowds is given, arriving at the
same sufficient and necessary condition. In Chapter 7 we use model-checking
to compute the degree of anonymity of a Crowds instance, while varying the
number of corrupted users and the probability pf of forwarding a message. The
obtained graph shows the trade-off between the anonymity and the efficiency of
the protocol and can be used to fine-tune its parameters. Finally, in Chapter 9
an instance of Crowds in a non-symmetric network is used to demonstrate an
improved bound on the probability of error developed in the same chapter.

3.2.3 Other protocols

MIXes [Cha81] provide anonymity by forwarding messages from node to
node, but instead of forwarding each message as it arrives, the nodes wait
until they have received a number of messages and then forward them in a
mixed order. When done correctly this can provide sender anonymity, receiver
anonymity as well as sender-receiver unlinkability, wrt an attacker that can see
the whole network. This can be done without requiring all of the nodes to
consistently broadcast packets. One draw back is that each node has to hold
a message until it has enough messages to properly mix them up, which might
add delays if the traffic is low. For this reason, some MIXes implementations
add dummy messages if the traffic is low, to provide shelter for the real ones.
Another problem is that, if the attacker can send n − 1 messages to the MIX
himself, where n is the MIX capacity, then he can recognize his own messages
in the output and thus relate the sender and receiver of the remaining one.

Onion routing is a general-purpose protocol [SGR97] that allows anony-
mous connection over public networks on condition that the sender knows the
public keys of all the other nodes. Messages are randomly routed through a
number of nodes called Core Onion Routers (CORs). In order to establish a
connection, the initiator selects a random path through the CORs and creates
an onion, a recursively layered data structure containing the necessary infor-
mation for the route. Each layer is encrypted with the key of the corresponding
COR. When a COR receives an onion, a layer is “unwrapped” by decrypting
it with the COR’s private key. This reveals the identity of the next router in
the path and a new onion to forward to that router. Since inner layers are
encrypted with different keys, each router obtains no information about the
path, other than the identity of the following router.

There are two possible configurations for an end-user. They can either
run their own COR (local-COR configuration) or use one of the existing ones
(remote-COR). The first requires more resources, but the second provides bet-
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ter anonymity. Onion routing has also been adapted to a number of other
settings.

The Ants protocol [GSB02] was designed for ad-hoc networks, in which
nodes do not have fixed positions. In this setting, each node has a pseudo
identity which can be used to send messages to a node, but does not give any
information about its true identity. In order to search the network, a node
broadcasts a search message with its own pseudo identity, a unique message
identifier and a time-to-live counter. The search message is sent to all of the
node’s neighbors, which in turn send the message to all of their neighbors until
the time-to-live counter runs out. Upon receiving a message, a node records
the connection on which the message was received and the pseudo address
of the sender. Each node dynamically builds and maintains a routing table
for all the pseudo identities it sees. This table routes messages addressed to
a pseudo identity along the connection over which the node has received the
most messages from that pseudo identity. To send a message to a particular
pseudo identity, a node sends a message with the pseudo identity as a “to”
address. If a node has that pseudo address in its table, it forwards the message
along the most used connection. Otherwise, it forwards the message to all its
neighbors.

This is similar to how real ants behave, they look for food by following the
Pheromones traces of other ants. The design for mobile Ad-hoc devices works
well for anonymity because mobile devices do not have permanent unique ad-
dress that can be used for routing, but parts of the protocol, such as continually
updating the routing tables are designed for devices that change there location,
and may be redundant in a peer-to-peer network of stationary nodes. Gunes
et al. provide a detailed efficiency analysis of this protocol, but as yet, there
is no published analysis of the anonymity it provides. An important element
that affects anonymity in this system is the implementation of the time-to-live
counter, which is usually done probabilistically.

Freenet [CSWH00] is a searchable peer-to-peer system for censorship resis-
tant document storage. It is both an original design for anonymity and an
implemented system. While it does not aim to hide the provider of a particu-
lar file it does aim to make it impossible for an attacker to find all copies of a
particular file. A key feature of the Freenet system is that each node will store
all the files that pass across it, deleting the least used if necessary. A hash of
the title (and other key words) identifies the files. Each node maintains a list
of the hashes corresponding to the files on immediately surrounding nodes. A
search is carried out by first hashing the title of the file being searched for,
and then forwarding the request to the neighboring node that has the file with
the most similar hash value. The node receiving the request forwards it in the
same way. If a file is found, it is sent back along the path of the request. This
unusual search method implements a node-to-node broadcast search one step
at a time. Over time it will group files with similar title hash values, making
the search more efficient.

Return Address Spoofing can be used to hide the identity of the sender.
The headers of messages passed across the Internet include the IP address of
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the sender. This address is not used by routers, so it does not have to be
correct. The Transmission Control Protocol (TCP) uses this return address to
send acknowledgments and control signals, but the User Datagram Protocol
(UDP) does not require these controls. Simply by using the UDP protocol and
entering a random return address, a sender can effectively send data and hide
its identity from the receiver. Without the controls of TCP, packets are liable to
loss or congestion. However, if the receiver has an anonymous back channel to
communicate with the sender, it can use this to send control signals. A problem
with UDP-spoofing is that such behavior is associated with wrongdoing, and
so it is often prohibited by ISPs.

Broadcast can be used to provide receiver anonymity by ensuring that enough
other people receive the message to obscure the intended recipient. A broadcast
can be performed in an overlay network by having each node send a message to
all of its neighbors, which in turn send it to all of their neighbors, and so on. If
a unique identity is added to the message, nodes can delete recurrences of the
same message and stop loops from forming. In large networks it may be neces-
sary to include some kind of time-to-live counter to stop the message flooding
the network. In anonymous systems this counter is usually probabilistic. One
of the most useful methods of broadcasting is Multicasting [Dee89].
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Probabilistic Approach
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Four

A probabilistic framework to model
anonymity protocols

In this chapter we establish the basic mathematical settings of our probabilistic
approach to anonymity protocols.

Anonymity protocols try to hide the link between a set A of anonymous
events and a set O of observable events. For example, a protocol could be
designed to allow users to send messages to each other without revealing the
identity of the sender. In this case, A would be the set of (the identities of) the
possible users of the protocol, if only one user can send a message at a time, or
the powerset of the users, otherwise. On the other hand, O could contain the
sequences of all possible messages that the attacker can observe, depending on
how the protocol works.

From the mathematical point of view, a probability distribution on A×O
provides all the information that we need about the joint behavior of the proto-
col and the users. From p(a, o) (in the discrete case) we can derive, indeed, the
marginal distributions p(a) and p(o), and the conditional distributions p(o|a)
and p(a|o).

Most of the times, however, one is interested in abstracting from the specific
users and their distribution, and proving properties about the protocol itself,
aiming at universal anonymity properties that hold for all possible sets of users
(provided they follow the rules of the protocol). For this purpose, it is worth
recalling that the joint distribution p(a, o) can be decomposed as p(a, o) =
p(o|a)p(a). This decomposition singles out exactly the contributions of the
protocol and of the users to the joint probability: p(a), in fact, is the probability
associated to the users, while p(o|a) represents the probability that the protocol
produces o given that the users have produced a. The latter clearly depends
only on the internal mechanisms of the protocol, not on the users.

As a consequence in the next section we define an anonymity system as a
collection of probability measures pc(·|a) on O (or a σ-field on O in the general
case), one for each anonymous event a. The measure pc(·|a) describes the
outcome of the system when it is executed with a as the anonymous event. The
intention is that pc(·|a) is a conditional probability, however it is not defined
as such, it is given as a specification of the system and we use the notation pc
to remind us of this fact. The system, together with a probability distribution
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on the anonymous events, will define an anonymity instance which induces a
probability measure on A×O, extending the construction p(a, o) = p(o|a)p(a)
to the general case. Following the intuition, the conditional probabilities on
the induced measure will coincide with the probability measures pc(·|a) of the
system.

Finally, in Section 4.2 will define anonymity systems that are produced by
composing two systems or by repeating the same system multiple times, with
the same anonymous event.

Examples of anonymous events In protocols where one user performs an
action of interest (such as paying in our Dining Cryptographers example) and
we want to protect his identity, the set A would be the same as the set I of the
users of the protocol. In the dining cryptographers, we take A = {c1, c2, c3,m}
where ci means that cryptographer i is paying and m that the master is paying.
In protocols where k users can perform the action of interest simultaneously at
each protocol execution, A would contain all k-tuples of elements of I. Another
interesting case are MIX protocols, in which we are not interested in protecting
the fact that someone sent a message (this is indeed detectable), but instead,
the link between the sender and the receiver, when k senders send messages to
k receivers simultaneously. In that case we consider the sets Is, Ir of senders
and receivers respectively, and take A to contain all k-tuples of pairs (a, a′)
where a ∈ Is, a′ ∈ Ir.

4.1 Formal definition of an anonymity system

Let A be a set of hidden or anonymous events, that we assume to be countable
and let O be a set of observables, possibly uncountable. The restriction on
countable sets A is realistic, since the anonymous information in practice is
the identity of users, or data that have a finite representation, to be stored
on a machine. On the other hand, the observable information might be the
outcome of an infinite procedure, for example traces of an infinite process,
which in general can be uncountable.

We assume that any possible outcome of our system consists of a pair
(a, o) where a ∈ A is the anonymous event that “happened”, for example the
user who sent a message in a network or the password that was chosen, and
o ∈ O is the observable that was produced. Thus we would like to define
our sample space as A × O and obtain a probability measure on a σ-field on
A × O. However, as explained in the beginning of this chapter, defining such
a measure would require us to assign probabilities to the anonymous events,
but these probabilities are not part of the system: they model the “behavior”
of the users at a specific instance of the system. The protocol itself assigns
probabilities to each observable event when some anonymous event happens,
independently form the probability of the anonymous event.

Thus, we first define a σ-field Fo on O. The elements of Fo are called
observable events and correspond to the events that the attacker can observe
and assign probabilities to. Then we provide for every anonymous event a ∈ A
a probability measure Pc(·|a) over Fo which models the behavior of our system
when a occurs.
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Definition 4.1.1 (Anonymity system). An anonymity system is a tuple (A,O,Fo, Pc)
where A is a countable set of anonymous events, O is a set (possibly uncount-
able) of observables, Fo is a σ-field over O and Pc = {Pc(·|a) | a ∈ A} is a
collection of probability measures over Fo.

Note that the above definition is similar to the definition of a channel on a
generic probability space (see for example [Gra90]) with the extra restriction
that the set of input values is countable.

Up to now we have not considered probabilities on anonymous events. To
describe completely an instance of an anonymity system we also need to specify
a (discrete) probability distribution PA on A, that is a function PA : A 7→ [0, 1]
such that ∑

a∈A
PA(a) = 1 (4.1)

We can now define an anonymity instance and the probability space on A×O
that it induces.

Definition 4.1.2 (Anonymity instance). An instance of an anonymity system
is a tuple (A,O,Fo, Pc, PA) where (A,O,Fo, Pc) is an anonymity system and
PA is a discrete probability distribution on A. We define the probability space
(Ω,F , P ) induced by the anonymity instance as follows:

• Ω = A×O

• Let R = {A × O|A ∈ 2A, O ∈ Fo} and define F as the σ-field generated
by R.

• We define Pr : R → [0, 1] as

Pr(E) =
∑
a∈A

Pc(obsa(E)|a)PA(a) ∀E ∈ R (4.2)

where obsa(E) = {o|(a, o) ∈ E}. Then P is the unique probability mea-
sure that extends Pr on F .

We first have to show that the probability space in the above definition is
well defined. The proof will be based on an extension theorem to lift a measure
from a semiring to a σ-field.

Definition 4.1.3. Let X be a set. A collection D of subsets of X is called a
semiring iff ∅ ∈ D and for all A,B ∈ D we have A∩B ∈ D and A\B =

⋃n
i=1 Ci

for some finite n and pairwise disjoint Ci ∈ D.

Theorem 4.1.4 ([Bil95], Theorem 11.3, page 166). Let D be a semi-ring and
let µ : D → [0,∞] be a function that is finitely additive, countably subadditive
and such that µ(∅) = 0. Then µ extends to a unique measure on the σ-field
generated by D.

Proposition 4.1.5. Let (A,O,Fo, Pc, PA) be an anonymity instance. The
probability space (Ω,F , P ) of Definition 4.1.1 is well-defined.
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Proof. We first show that R = {A × O|A ∈ 2A, O ∈ Fo} is a semiring. We
have that (A1×O1)∩ (A2×O2) = (A1∩A2)× (O1∩O2) and 2A,Fo are closed
under intersection, so R is also closed under intersection. Also, if R1, R2 ∈ R
with R2 = (A2 ×O2) then

R1 \R2 = R1 ∩ (A2 ×O2)c

= R1 ∩ ((Ac2 ×O2) ∪ (A2 ×Oc2) ∪ (Ac2 ×Oc2))
= (R1 ∩ (Ac2 ×O2)) ∪ (R1 ∩ (A2 ×Oc2)) ∪ (R1 ∩ (Ac2 ×Oc2))

Since 2A,Fo are closed under complement, we see that R1 \R2 can be written
as a finite union of pairwise disjoint elements of R. Also ∅ ∈ R so R is a
semiring.

We now show that Pr is countably additive on R. We notice that

obsa(
⋃
i

Ei) =
⋃
i

obsa(Ei) (4.3)

thus:

Pr(
⋃
iEi) =

∑
a∈A Pc(obsa(

⋃
iEi)|a)PA(a) (4.2)

=
∑
a∈A Pc(

⋃
i obsa(Ei)|a)PA(a) (4.3)

=
∑
a∈A

(∑
i Pc(obsa(Ei)|a)

)
PA(a) Pc(·|a) count. additive

=
∑
i

∑
a∈A Pc(obsa(Ei)|a)PA(a) rearrangement

=
∑
i Pr(Ei) (4.2)

The rearrangement is possible since the sum converges and its terms are non-
negative. So by Theorem 4.1.4 the measure P exists and it is unique. We
finally have to show that it is a probability measure, that is P (Ω) = 1

P (Ω) = Pr(Ω) Ω ∈ R
=

∑
a∈A Pc(obsa(Ω)|a)PA(a) (4.2)

=
∑
a∈A Pc(O|a)PA(a) obsa(Ω) = O

=
∑
a∈A PA(a) Pc(·|a) is a measure on Fo

= 1 (4.1)

The intuition behind the construction of P is that we want a measure that
assigns probabilities to anonymous events according to PA and conditional
probabilities given an anonymous event a according to Pc(·|a). We define
[a] = {a} × O, a ∈ A and [O] = A × O, O ⊆ O. We show that the behavior
of the constructed measure follows this intuition.

Proposition 4.1.6. Let (A,O,Fo, Pc, PA) be an anonymity instance and (Ω,F ,
P ) the probability space induced by it. The following holds for all a ∈ A and
all O ∈ Fo

1. P ([a]) = PA(a)

2. P ([O]|[a]) = Pc(O|a) if P ([a]) > 0
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Proof.

P ([a]) =
∑
a′∈A Pc(obsa′([a])|a′)PA(a′) (4.2)

= Pc(obsa([a])|a)PA(a) obsa′([a]) = ∅ for a′ 6= a

= PA(a) obsa([a]) = O, Pc(O|a) = 1

P ([O]|[a])

= P ([O] ∩ [a])
P ([a])

= 1
P ([a])

∑
a′∈A Pc(obsa′([O] ∩ [a])|a′)PA(a′) (4.2)

= 1
P ([a])Pc(obsa([O] ∩ [a])|a)PA(a) obsa′([O] ∩ [a]) = ∅, a′ 6= a

= Pc(obsa([O] ∩ [a])|a) Prop. 4.1.6 case (1)

= Pc(O|a) definition of obsa

For simplicity we will sometimes write P (a), P (O) for P ([a]), P ([O]) and
we will use P ([O]|[a]) and Pc(O|a) interchangeably.

4.1.1 Finite anonymity systems

In the case where A,O are finite we can describe our system using discrete
probabilistic distributions. More specifically we always consider Fo = 2O and
define Pc(·|a) by assigning probabilities to the individual observables.

Definition 4.1.7. A finite anonymity system is a tuple (A,O, pc) where A is
a finite set of anonymous events, O is a finite set of observables and for all
a ∈ A: pc(·|a) is a discrete probability distribution on O, that is∑

o∈O
pc(o|a) = 1 ∀a ∈ A

pc can be represented by a |A| × |O| matrix M such that mi,j = pc(oj |ai):

o1 · · · om

a1 pc(o1|a1) . . . pc(om|a1)
...

...
. . .

...

an pc(o1|an) . . . pc(om|an)

Definition 4.1.8. A finite anonymity instance is a tuple (A,O, pc, pA) where
(A,O, pc) is a finite anonymity system and pA is a discrete probability distri-
bution on A. The induced probability distribution on A×O is defined as

p((a, o)) = pA(a)pc(o|a) ∀a ∈ A, o ∈ O

which corresponds to the construction of Definition 4.1.2 in the discrete case.

In Part II we study exclusively finite anonymity systems.
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4.2 Protocol composition

In protocol analysis, it is often easier to split complex protocols in parts, analyze
each part separately and then combine the results. In this section we define a
type of composition where two protocols are executed independently with the
same anonymous event.

Definition 4.2.1. Let S1 = (A,O1,Fo1, Pc1), S2 = (A,O2,Fo2, Pc2) be two
anonymity systems with the same set of anonymous events. The independent
composition of S1, S2, written S1;S2 is an anonymity system (A,O,Fo, Pc)
such that

• O = O1 ×O2

• Let R = {O1×O2|O1 ∈ Fo1, O2 ∈ Fo2}, Fo is the σ-field generated by R,

• Pc(·|a) is the unique probability measure on Fo such that

Pc(O|a) = Pc1(proj1(O)|a)Pc2(proj2(O)|a) ∀O ∈ R

where proji(O) = {oi|(o1, o2) ∈ O}

We can show that this is a well-defined anonymity system in a way similar
to Proposition 4.1.5. Note that Pc(·|a) is known in probability theory as the
product probability measure of Pc1(·|a), Pc2(·|a).

An interesting case of composition is when a protocol is “repeated” multiple
times with the same anonymous event. This situation arises when an attacker
can force a user to repeat the protocol many times.

Definition 4.2.2. The n-repetition of an anonymity system S = (A,O,Fo, Pc)
is the anonymity system Sn = S; . . . ;S, n times.

4.3 Example: modeling a system using probabilistic
automata

Let A be a finite (for simplicity) set of user identities involved in a protocol that
we wish to keep anonymous. For each user a ∈ A we have a fully probabilistic
automaton M(a) modeling the behavior of the system when a executes the
protocol.

We assume that these automata have the same set of external actions, thus
the same set of traces. Let (ΩT ,FT , PT (a)) be the probability space induced
by M(a) on the set of its traces (see Section 2.4), ΩT ,FT being common for
all automata. We define our anonymity system (A,O,Fo, Pc) as follows

• O = ΩT

• Fo = FT
• Pc(·|a) = PT (a)
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In this system, the observable events that the attacker can see are cones of
traces, not single traces, which is reasonable since infinite traces require infinite
time to be observed. The probability of observing a cone when a certain user
executes the protocol is given by Pc(·|a).
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Five

Strong Anonymity

In this chapter we consider the strongest form of anonymity that a system
can achieve. In literature there are two interpretations of this notion in the
probabilistic setting. One, proposed by Halpern and O’Neill in [HO03, HO05],
focuses on the lack confidence of the attacker, and expresses the fact that the
a posteriori probabilities of the anonymous events, after each observation, are
the same, so the attacker cannot distinguish them. Formally this means that,
for any a, a′, and o with positive probability

p(a|o) = p(a′|o)
The other notion focuses on the fact that the attacker cannot learn anything

about the anonymous events from the observable outcome of the protocol.
Formally, this idea can be expressed as the requirement that the a posteriori
probability of each anonymous event after an observation be the same as its
a priori probability. This property was used by Chaum in his seminal paper
[Cha88] and it was called conditional anonymity by Halpern and O’Neill in
[HO03, HO05]. An equivalent condition is that the anonymous events and the
observable events be (probabilistically) independent, so there is no link that the
attacker can establish between the observation and the anonymous event that
has produced it. There is yet another equivalent formulation, which consists
in requiring that, for each observation, the likelihood of the anonymous events
be the same. The likelihood of a after observing o is defined as the conditional
probability p(o|a), so formally this can be stated as the condition that, for any
o and a, a′ with positive probability

p(o|a) = p(o|a′)
We can see that this latter property depends only on the protocol, not on

the probabilities of the users. This is a feature that we consider crucial, as
argued in previous chapters. Hence we will adopt this formulation as definition
of the notion of strong anonymity. Note that the difference between our notion
and the one proposed as strong anonymity by Halpern and O’Neill consists in
replacing p(a|o) by p(o|a).

We should mention that Halpern and O’Neill also propose a formal inter-
pretation of the notion of “beyond suspicion”, which is the strongest notion
in Reiter and Rubin’s hierarchy. This interpretation requires the a posteriori
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probability of the anonymous event which actually took place to be smaller or
equal to that of any other anonymous event. They state that this definition
is strictly weaker than their definition of strong anonymity. In our framework,
however, it can be shown that the two definitions would be equivalent. This is
because in our framework the probabilities do not depend on the anonymous
event that actually took place.

5.1 Formal definition

In this thesis we will adopt the following definition of strong anonymity, similar
to the notion of probabilistic anonymity proposed in [BP05]:

Definition 5.1.1 (Strong anonymity). An anonymity system (A,O,Fo, Pc) is
strongly anonymous if ∀a, a′ ∈ A:

Pc(·|a) = Pc(·|a′)

In the case of a finite anonymity system (A,O, pc), the above definition is
equivalent to requiring that pc(o|a) = pc(o|a′) for all a, a′ ∈ A and o ∈ O,
which is the same as saying that all the rows of the probability matrix are
equal.

The idea is that if all anonymous events produce the same observable events
with the same probability, then the attacker can learn no information by ob-
serving the output of the protocol. Note that this definition does not depend
on the probability of the anonymous events themselves, which in fact is not
even part of an anonymity system.

An alternative definition considers all instances of the anonymity system
and requires the probability of an anonymous action to be the same before and
after the observation. This is the property that was proved by Chaum for the
Dining Cryptographers ([Cha88]) and corresponds, as we already mentioned,
to the property of conditional anonymity in [HO03].

Definition 5.1.2 (Conditional anonymity). An anonymity system (A,O,Fo, Pc)
satisfies conditional anonymity if for all probability distributions PA on A, for
all a ∈ A, and all observable events O ∈ Fo such that P ([O]) > 0, the following
holds

P ([a]) = P ([a]|[O])

where P is the probability measure induced by the anonymity instance (A,O,Fo,
Pc, PA).

We remind that [a] is defined as [a] = a×O and [O] = A×O.
We now show that the two above definitions are equivalent. This is a

standard result in probability theory, but we include the proof for the interested
reader, since it is only a few lines.

Theorem 5.1.3. Strong anonymity (Def. 5.1.1) is equivalent to conditional
anonymity (Def. 5.1.2).

Proof. For simplicity we write P (a), P (O), . . . for P ([a]), P ([O]), . . ..
⇒) Let PA be a distribution over A, P the probability measure induced by

the anonymity instance and O ∈ Fo an observable event such that P (O) > 0.
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If P (a) = 0 then P (a|O) = 0 and we are finished. Otherwise from Def. 5.1.1
and since Pc(O|a) = P (O|a) (Prop. 4.1.6) we have P (O|a) = P (O|a′) for all
a, a′ ∈ A. We first show that P (O) = P (O|a):

P (O) =
∑
a′∈A P (O ∩ a′) countable additivity

=
∑
a′∈A,P (a′)>0 P (O|a′)P (a′)

= P (O|a)
∑
a′∈A,P (a′)>0 P (a′) P (O|a′) constant

= P (O|a)

Then P (a|O) = P (O|a)P (a)
P (O) = P (a).

⇐) Let PA be a uniform distribution over A, P the probability measure in-
duced by the anonymity instance and O ∈ Fo an observable event. If P (O) = 0

then P (O|a) = 0, the same for all a ∈ A. Otherwise P (O|a) = P (a|O)P (O)
P (a) =

P (O), the same for all a ∈ A. Since Pc(O|a) = P ([O]|[a]) (Prop. 4.1.6) then
Pc(·|a) = Pc(·|a′) for all a, a′ ∈ A.

5.2 Strong anonymity of the dining cryptographers
protocol

We give now a proof that the Dining Cryptographers protocol, described in
section 3.2.1, satisfies strong anonymity under the assumption of fair coins.
The proof comes from [Cha88].

We consider a generalized version of the Dining Cryptographers, with an
arbitrary number of cryptographers and coins. Each coin can give either head
(interpreted as 0) or tail (interpreted as 1), with uniform probability (fair coin).
The coins are placed in an arbitrary way, but each coin is adjacent to (can be
read by) exactly two cryptographers. We assume that there is at most one
payer, and the goal is to conceal his identity.

In this generalized version, the protocol works as follows: after the payer
(if any) is chosen, all the coins get tossed. Then each cryptographer calculates
the binary sum of of all its adjacent coins, adding 1 in case he is the payer,
and announces the outcome. The protocol reveals the presence of a payer,
because the binary sum of all the announcements is 1 iff and only if one of the
cryptographers is the payer. This is easy to see: each coin is counted twice,
hence the contribution of all coins is 0. More interestingly, the protocol provides
anonymity, and it is robust to the possible cooperation of some cryptographers
with the attacker, where by cooperation we mean that the values of the coins
visible to the corrupted cryptographers are revealed to the attacker.

To state formally the property of anonymity, let us consider the graph G
whose vertices are the cryptographers and whose edges are the coins, with the
obvious adjacency relation. From G we create a new graph Go by removing
all the edges corresponding to the coins visible to corrupted cryptographers,
since these coins are revealed to the attacker. Go may not be connected, and
in particular each corrupted cryptographer is disconnected from all the others
since all his edges are removed. Chaum proved that strong anonymity holds
within each connected component of Go. More precisely, from the observation
the attacker can single out the connected component Gc of Go to which the
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payer belongs, but he does not gain any information concerning the precise
identity of the payer within Cc.

In order to present the proof of anonymity, we need some preliminary def-
initions. Let n be the number of vertices (cryptographers) of Gc and m the
number of edges (coins). Let B be the n ×m incidence matrix of Gc, defined
as bi,j = 1 if the vertex i is connected to the edge j, 0 otherwise. Each coin
ci takes a value in GF(2), the finite field consisting of 0, 1 with addition and
multiplication modulo 2. Let ~c = (c1, . . . , cm) be a vector in GF(2)m composed
of the values of all coins. Also let ~r = (r1, . . . , rn) ∈ GF(2)n be the inversion
vector defined as rk = 1 if cryptographer k is the payer, 0 otherwise. By the
assumption that there is no more than one payer, there is at most one k such
that rk = 1. We will denote by ~ri the inversion vector with ri = 1.

Each cryptographer outputs the sum of its adjacent coins plus a possible
inversion, so the output of the protocol is a vector ~o ∈ GF(2)n computed as

~o = B~c⊕ ~r
where operations are performed inGF (2) (that is modulo 2). Since each column
of B has exactly two 1s we know that B~c has even parity (number of 1s), so ~o
has the same parity as ~r, odd if there is a payer, even otherwise.

Now assuming that there is always a payer inGc we define a finite anonymity
system S(Gc) = (A,O, pc) as follows:

• A = {a1, . . . , an} where ai means that cryptographer i is the payer,

• O = {~o ∈ GF(2)n|∑i oi = 1}, the possible outcomes of the protocol, and

• pc(~o|ai) is the probability of having output ~o when cryptographer i is the
payer, that is when the inversion vector is ~ri.

Theorem 5.2.1 (Chaum, [Cha88]). The anonymity system S(Gc) = (A,O,
pc) corresponding to the connected component Gc satisfies strong anonymity.

Proof. Fix an observable ~o ∈ O and a cryptographer ai ∈ A. To compute
the probability pc(~o|ai) we have to compute all the possible coin configurations
that will produce ~o as output. These will be given by the following system of
linear equations in GF(2):

B~x = ~o⊕ ~ri
Since all columns of B have exactly two 1s, the sum of all its rows is ~0, so they
are linearly dependent. On the other hand, all strict subsets of rows of B are
linearly independent in GF(2). This is because the sum of two rows (vertices)
gives a vertex combining all the edges of the two. If the sum of a subset of
rows is ~0 it would mean that there is no edge joining them to the rest of the
vertices, which is impossible since Gc is connected.

Hence the rank of B is n−1 and there are 2n−1 vectors in GF(2)n that can be
written as a linear combination of the columns of B, that is all vectors with even
parity (since all columns have even parity). Since ~o⊕~ri has even parity it can be
written as a linear combination of the columns, thus the system is solvable and
has 2m−(n−1) solutions. So 2m−(n−1) coin configurations produce the output
~o and since the coins are assumed fair the probability of each configuration
is 2−m and the probability of getting ~o (when ~ri is the inversion vector) is
2−(n−1). This is true for all inversion vectors so pc(~o|ai) = pc(~o|aj) = 2−(n−1)

for all ai, aj ∈ A and ~o ∈ O.
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5.3 Protocol composition

In some cases of anonymity protocols, a user may need to execute the protocol
multiple times, and it may be possible that the attacker discovers that the
culprit is the same in all executions, even though he does not know which. For
example, the dining cryptographers protocol could be performed many times
to allow a user to transmit a message in the form of a binary sequence: at each
run of the protocol, there is either no payer (transmission of 0) or the payer is
the selected user (transmission of 1). The attacker may know that the protocol
is being used in this way, thus he may know that whenever there is a payer,
it’s always the same payer.

The information that the culprit is always the same increases the knowledge
of the attacker, hence in principle the repetition of the protocol may weaken
the anonymity property. However in case of strong anonymity this is not the
case, as we prove in the rest of this section.

First we show that the composition of two anonymity systems (defined in
Section 4.2) satisfies strong anonymity if and only if both systems satisfy it.

Proposition 5.3.1. Let S1 = (A,O1,Fo1, Pc1), S2 = (A,O2,Fo2, Pc2) be two
anonymity systems and S1;S2 = (A,O,Fo, Pc). S1;S2 satisfies strong anony-
mity iff both S1 and S2 satisfy it.

Proof. if) If Pc1(·|a) = Pc1(·|a′) and Pc2(·|a) = Pc2(·|a′) for all a, a′ ∈ A then

Pc(O|a) = Pc1(proj1(O)|a)Pc2(proj2(O)|a)

= Pc1(proj1(O)|a′)Pc2(proj2(O)|a′)
= Pc(O|a′)

for all O ∈ Fo.
only if) If ∃O ∈ O such that Pc(O|a) 6= Pc(O|a′) then either Pc1(proj1(O)|a) 6=
Pc1(proj1(O)|a′) or Pc2(proj2(O)|a) 6= Pc2(proj2(O)|a′).

As a corollary we get that any repetition of a strongly anonymous protocol
is also strongly anonymous, which conforms to the intuition that a strongly
anonymous protocol leaks no information at all.

Corollary 5.3.2. Let S = (A,O,Fo, Pc) be an anonymity system. The n-
repetition Sn of S is strongly anonymous, for all n >= 1, iff S is strongly
anonymous.

Proof. Proposition 5.3.1 together with the fact that Sn = S; . . . ;S.
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Six

Probable Innocence

The notion of strong anonymity discussed in previous chapter describes the
ideal situation in which the protocol does not leak any information concerning
the identity of the user. We have shown that this property is satisfied by the
Dining Cryptographers with fair coins [Cha88]. Protocols used in practice,
however, especially in the presence of attackers or corrupted users, are only
able to provide a weaker notion of anonymity.

In [RR98] Reiter and Rubin have proposed a hierarchy of notions of proba-
bilistic anonymity in the context of Crowds. We recall that Crowds is a system
for anonymous web surfing aimed at protecting the identity of the users when
sending (originating) messages. This is achieved by forwarding the message to
another user selected randomly, which in turn forwards the message, and so
on, until the message reaches its destination. Some of the users may be cor-
rupted (attackers), and one of the main purposes of the protocol is to protect
the identity of the originator of the message from those attackers.

We recall the hierarchy of Reiter and Rubin, already discussed in Sec-
tion 3.1. Here the sender stands for the user that forwards the message to
the attacker.

Beyond suspicion From the attacker’s point of view, the sender appears no
more likely to be the originator of the message than any other potential
sender in the system.

Probable innocence From the attacker’s point of view, the sender appears
no more likely to be the originator of the message than to not be the
originator.

Possible innocence From the attacker’s point of view, there is a non-negligible
probability that the real sender is someone else.

This chapter focuses on the notion of probable innocence. The first goal
is, of course, to give a formal definition of this notion. Let us first discuss the
formal approaches proposed in literature.

In [RR98] Reiter and Rubin also considered a formal definition of probable
innocence, tailored to the characteristics of the Crowds system. This definition
is not given explicitly, but it can be derived from the formula that they proved
to hold for Crowds under certain conditions. The formula says that the prob-
ability that the originator forwards the message to an attacker (given that an
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attacker receives eventually the message) is at most 1/2. In other words, their
definition expresses a bound on the probability of detection.

Later Halpern and O’Neill proposed in [HO05] a formal interpretation of
the hierarchy above in more general terms, and focusing on the confidence of
the attacker. In particular their definition of probable innocence holds if for the
attacker, given the events that he has observed, the probability that a user i is
the culprit (i.e. has performed the action of interest) is not greater than 1/2.
Analogously their interpretation of beyond suspicion holds if for the attacker,
given the events that he has observed, the probability to be the culprit is not
greater for the actual culprit than for any other user in the system.

However, the property of probable innocence that Reiter and Rubin prove
formally for the system Crowds in [RR98] does not mention the user’s proba-
bility of being the originator, but only the probability of the event observed by
the attacker. Their property depends only on the way the protocol works, and
on the number of the attackers. It is totally independent from the probability
distribution on the users to originate the message. As argued in previous chap-
ters, this is a very desirable property, since we do not want the correctness of
a protocol to depend on the users’ intentions of originating a message. For the
stronger notion of anonymity considered in previous chapter, this abstraction
from the users’ probabilities leads to our notion of strong anonymity, which, we
recall, corresponds to the notion of probabilistic anonymity defined in [BP05].
In this sense the formal property considered by Reiter and Rubin is to Halpern
and O’Neill’s interpretation of probable innocence as our notion of strong ano-
nymity is to Halpern and O’Neill’s interpretation of beyond suspicion. The
parallel is even stronger. We will see in fact that the difference between the
two notions consists in exchanging p(o|a) with p(a|o).

Another desired feature for a general notion of probable innocence is the
abstraction from the specific characteristics of Crowds. In Crowds, (at least
in its original formulation as given in [RR98]) there are certain symmetries
that derive from the assumption that the probability that user i forwards the
message to user j is the same for all i and j. The property of probable innocence
proved for Crowds in [RR98] depends strongly on this assumption. We want a
general notion which protocols may satisfy in the case they do not satisfy the
original Crowds’ symmetry assumptions.

For completeness, we also consider the composition of protocol executions,
with specific focus on the case that the originator is the same and the protocol to
be executed is the same. This situation can arise, for instance, when an attacker
can induce the originator to repeat the protocol (multiple paths attack). We
extend the definition of probable innocence to the case of protocol composition
under the same originator, and we study how this property depends on the
number of compositions.

Contribution In this chapter we propose a general notion of probable in-
nocence which combines the spirit of the approach of Reiter and Rubin and
of the one of Halpern and O’Neill. Namely it expresses a limit both on the
attacker’s confidence and on the probability of detection. Furthermore, our
notion avoids the shortcomings of those previous approaches, namely it does
not depend on symmetry assumptions or on the probabilities of the users to
perform the action of interest.
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We also show that our definition, while being more general than the prop-
erty that Reiter and Rubin have proved for Crowds, it agrees with the latter
under the specific symmetry conditions satisfied by Crowds. Furthermore, we
show that in the particular case that the users have uniform probability of
being the originator, we obtain a property similar to the definition of probable
innocence given by Halpern and O’Neill.

Another contribution is the analysis of the robustness of probable inno-
cence under multiple paths attacks, which induce a repetition of the protocol.
We show a general negative result, namely that no protocol can ensure prob-
able innocence under an arbitrary number of repetitions, unless the system is
strongly anonymous. This generalizes the result, already known in literature,
that Crowds cannot guarantee probable innocence under unbounded multiple
path attacks.

Plan of the chapter In the next section we illustrate the Crowds protocol.
In Section 6.1 we recall the property proved for Crowds and the definition of
probable innocence by Halpern and O’Neill, and we discuss them. In Section
6.2 we propose our notion of probable innocence and we compare it with those
of Section 6.1. In Section 6.4 we consider the repetition of an anonymity pro-
tocol and we show that we cannot guarantee probable innocence for arbitrary
repetition unless the protocol is strongly anonymous. Finally, in Section 6.5
we present some applications and results of our notion to Crowds and to the
Dining Cryptographers.

6.1 Existing definitions of probable innocence

As explained in the introduction, in literature there are two different approaches
to a formal definition of probable innocence. The first, implicitly considered
by Reiter and Rubin, focuses on the probability of the observables and con-
strains the probability of detecting a user. The second, proposed by Halpern
and O’Neill, focuses on the probability of the users and limits the attacker’s
confidence that the detected user is the originator.

In this section we present the two existing definitions in the literature,
and we argue that each of them has a shortcoming: the first does not seem
satisfactory when the system is not symmetric. The second depends on the
probability distribution of the users.

The Crowds protocol We briefly recall the Crowds protocol, already dis-
cussed in Section 3.2.2. The protocol allows Internet users to perform web
transactions without revealing their identity. A crowd is a group of m users
who participate in the protocol. Some of the users may be corrupted which
means they can collaborate in order to reveal the identity of the originator. Let
c be the number of such users and pf a parameter of the protocol, explained
below. When a user, called the initiator or originator, wants to request a web
page he must create a path between him and the server. This is achieved by
the following process: The initiator selects randomly a member of the crowd
(possibly himself) and forwards the request to him. We will refer to this latter
user as the forwarder. A forwarder, upon receiving a request, flips a biased
coin. With probability 1 − pf he delivers the request directly to the server.

43



6. Probable Innocence

With probability pf he selects randomly, with uniform probability, a new for-
warder (possibly himself) and forwards the request to him. The new forwarder
repeats the same procedure.

6.1.1 First approach (limit on the probability of detection)

Reiter and Rubin ([RR98]) consider a notion which limits the probability of
the originator being observed by a corrupted member, that is being directly
before him in the path. More precisely, let I denote the event “the originator
is observed by a corrupted member” and H the event “at least one corrupted
member appears in the path”. Then the intended property is expressed by

p(I|H) ≤ 1/2 (6.1)

In [RR98] it is proved that this property is satisfied by Crowds ifm ≥ pf

pf−1/2 (c+
1).

For simplicity, we suppose that a corrupted user will not forward a request
to other crowd members, so at most one user can be observed. This approach
is also followed in [RR98, Shm02, WALS02] and the reason is that by forward-
ing the request the corrupted users cannot gain any new information since
forwarders are chosen randomly.

We now express the above definition in the framework of Chapter 4. Since
I ⇒ H we have p(I|H) = p(I)/p(H). If Ai denotes that “user i is the orig-
inator” and Di is the event “the user i was observed by a corrupted mem-
ber (appears in the path right before the corrupter member)” then p(I) =∑
i p(Di ∧ Ai) =

∑
i p(Di|Ai)p(Ai). Since p(Di|Ai) is the same for all i then

the definition (6.1) can be written ∀i : p(Di|Ai)/p(H) ≤ 1/2.
Assuming that there is at least one corrupted user (c ≥ 1), we create a

finite anonymity system (A,O, pc) as follows:

• A = {a1, . . . , an} is the set of honest crowd members, where n = m− c
• O = {o1, . . . , on} where oi means that the user i was detected by a

corrupted user.

• pc(oi|ai) = p(Di|Ai)
p(H)

This system considers only the honest users (there is no anonymity requirement
for corrupted users) under the assumption that a user is always detected, so
all probabilities are conditioned on H (if no user is detected then anonymity
is not an issue). Essentially ai denotes Ai and oi denotes Di, so equation (6.1)
can now be written as pc(oi|ai) ≤ 1

2 which can be generalized as a definition of
probable innocence.

Definition 6.1.1 (RR-probable innocence). A finite anonymity system (A,O,
pc) satisfies RR-probable innocence iff

pc(o|a) ≤ 1
2
∀a ∈ A, o ∈ O

This is indeed an intuitive definition for Crowds. However there are many
questions raised by this approach. For example, we are only interested in the
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o1 o2 · · · on

a1
c

m−pf
l · · · l

a2 0
...

... n-1 Crowd

an 0

o1 o2 o3

a1 2/3 1/6 1/6

a2 2/3 1/6 1/6

a3 2/3 1/6 1/6

Figure 6.1: Examples of arbitrary (non symmetric) protocols. The value at
position i, j represents pc(oj |ai) for user ai and observable oj .

probability of some events, what about other events that might reveal the
identity of the initiator? For example the event ¬o will have probability at
least 1/2, is this important? In fact, that’s the reason we stated this definition
only for finite systems, since we cannot ask the probability of all events to
be less that 1/2 (for example O is itself an event with probability always 1).
Moreover, suppose in the example of Crowds that the probability of oi under
a different user j is negligible. Then, if we observe oi, isn’t it more probable
that user i sent the message, even if pc(oi|ai) is less than 1/2?

If we consider arbitrary protocols, then there are cases where Definition
6.1.1 does not express the expected properties of probable innocence. We give
two examples of such systems in Figure 6.1 and we explain them below.

Example 1 On the left-hand side of Figure 6.1, m users are participating
in a Crowds-like protocol. The only difference, with respect to the standard
Crowds, is that user 1 is behind a firewall, which means that he can send
messages to any other user but he cannot receive messages from any of them.
In the corresponding table we give the conditional probabilities pc(oj |ai) for
the honest users, where we recall that oj means that j is the user who sends
the message to the corrupted member, and ai means that i is the initiator.
When user 1 is the initiator there is a c/m chance that he sends the message
to a corrupted user directly and there is also a chance that he forwards it to
himself and sends it to a corrupted user in the next round. So pc(o1|a1) =
c
m + 1

mpf pc(o1|a1) which gives pc(o1|a1) = c
m−pf

. All other users can be
observed with the same probability l = 1

n−1 (1− c
m−pf

). When any other user
is the initiator, however, the probability of observing user 1 is 0, since the latter
will never receive the message. In fact, the protocol will behave exactly like a
Crowd of n− 1 honest users as is shown in the table.

Note that Reiter and Rubin’s definition (Def. 6.1.1) requires all values of
this table to be at most 1/2. In this example the definition holds provided
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that m − 1 ≥ pf

pf−1/2 (c + 1), since the (n − 1) × (n − 1) sub-matrix is the
same as in the original Crowds (which satisfies the definition) and the first row
also satisfies it. However, if a corrupted member observes user 1 he can be
sure that he is the initiator since no other initiator leads to the observation of
user 1. The problem here is that Reiter and Rubin’s definition constrains only
the probability of detection of user 1 and says nothing about the attacker’s
confidence in case of detection. We believe that totally revealing the identity
of the initiator with non-negligible probability is undesirable and should be
considered as a violation of an anonymity notion such as probable innocence.

Example 2 On the right-hand side we have an opposite counter-example.
Three users want to communicate with a web server, but they can only access
it through a proxy. We suppose that all users are honest but they do not trust
the proxy so they do not want to reveal their identity to him. So they use the
following protocol: the initiator first forwards the message to one of the users
1, 2 and 3 with probabilities 2/3, 1/6 and 1/6 respectively, regardless of which
is the initiator. The user who receives the message forwards it to the proxy.
The probabilities of observing each user are shown in the corresponding table.
Regardless of which is the initiator, user 1 will be observed with probability
2/3 and the others with probability 1/6 each.

In this example Reiter and Rubin’s definition does not hold since pc(o1|a1) >
1/2. However all users produce the same observables with the same probabili-
ties hence we cannot distinguish between them. Indeed the system is strongly
anonymous (Def. 5.1.1 holds)! Thus, in the general case, we cannot adopt Def.
6.1.1 as the definition of probable innocence since we want such a notion to be
implied by strong anonymity.

However, it should be noted that in the case of Crowds the definition of
Reiter and Rubin is correct, because of a special symmetry property of the
protocol. This is discussed in detail in Section 6.3.

Finally, note that the above definition does not mention the probability of
the users to be the originator. It only considers such events as conditions in
the conditional probability of the event oi given that i is the originator. The
value of such conditional probability does not imply anything for the user, he
might have a very small or very big probability of initiating the message. This
is a major difference with respect to the next approach.

6.1.2 Second approach (limit on the attacker’s confidence)

Halpern and O’Neill propose in [HO03] a general framework for defining ano-
nymity properties. We give a very abstract idea of this framework, detailed
information is available in [HO03]. In this framework a system consists of a
group of agents, each having a local state at each point of the execution. The
local state contains all information that the user may have and does not need to
be explicitly defined. Each point in the execution of the system is represented
by a tuple (r,m) where r is a function from time to global states and m is the
current time. At each point (r,m) user i can only have access to his local state
ri(m). So he does not know the actual point (r,m) but at least he knows that
it must be a point (r′,m′) such that r′i(m

′) = ri(m). Let Ki(r,m) be the set
of all these points. If a formula φ is true in all points of Ki(r,m) then we say
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that i knows φ. In the probabilistic setting it is possible to create a measure on
Ki(r,m) and draw conclusions of the form “formula φ is true with probability
p”.

To define probable innocence Halpern and O’Neill first define a formula
θ(i, a) meaning “user i performed the event a”. We then say that a system
has probable innocence if for all points (r,m), the probability of θ(i, a) at this
point for all users j (that is, the probability that arises by measuring Kj(r,m))
is at most one half.

This definition can be expressed in the framework of Chapter 4. The prob-
ability of a formula φ for user j at the point (r,m) depends only on the set
Kj(r,m) which itself depends only on rj(m). The last is the local state of
the user, that is the only thing that he can observe. In our framework this
corresponds to the observable events. Thus, we can reformulate the definition
of Halpern and O’Neill as follows.

Definition 6.1.2 (HO-probable innocence). An anonymity instance (A,O,Fo,
Pc, PA) satisfies HO-probable innocence iff

P ([a]|[O]) ≤ 1
2
∀a ∈ A, O ∈ Fo

where P is the probability measure induced by the instance.

Although this definition appears to be similar to the one of Reiter and
Rubin, it’s quite different. It requires that the probability of any anonymous
event, given any observation, should be at most one half. Intuitively, this
would mean that the attacker is not confident enough about which anonymous
event occurred. However, in contrast to RR-probable innocence, this definition
doesn’t constrain the probability of the observable event itself.

The problem with this definition is that the probabilities of the anonymous
events are not part of the system and we can make no assumptions about them.
In fact, this is the reason that we had to define HO-probable innocence on an
anonymity instance (which contains also a distribution PA over A) and not
on an anonymity system, the probability P ([a]|[O]) could not be defined on
the latter. Moreover, HO-probable innocence cannot hold for an arbitrary user
distribution. Consider for example the case where we know that user i visits
very often a specific web site, so even if we have 100 users, the probability
that he performed a request to this site is 0.99. Then we cannot expect this
probability to become less than one half under all observations. This is why
we didn’t quantify over all distributions PA as we did in the definition of
conditional anonymity (Def. 5.1.2). A similar remark led Halpern and O’Neill
to define conditional anonymity. If a user i has higher probability of performing
the action than user j then we cannot expect this to change because of the
system. Instead we can request that the system does not provide any new
information about the originator of the action.

6.2 A new definition of probable innocence

In this section we propose a new notion of probable innocence that combines the
two existing ones presented in previous section. Definition 6.2.2 extends Reiter
and Rubin’s definition while preserving its spirit, which is to constrain the
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probability of detection of a user. Definition 6.2.1 follows the spirit of Halpern
and O’Neill’s definition, which is to constrain the attacker’s confidence. Our
notion is based on Definition 6.2.2 and it combines both spirits in the sense
that it turns out to be equivalent to Definition 6.2.1. Moreover it overcomes
the shortcomings discussed in previous section, namely, it does not depend on
the symmetry of the system and it does not depend on the users’ probabilities.
We also show that our notion is a generalization of the existing ones since it can
be reduced to the first under the assumption of symmetry, and to the second
under the assumption of uniform users’ probability.

Let (A,O,Fo, Pc) be an anonymity system. For a given distribution PA on
A we denote by P the measure induced by the anonymity instance (A,O,Fo, Pc,
Pa). For simplicity we will write P (a), P (O), . . . for P ([a]), P ([O]), . . . respec-
tively.

In general we would like our anonymity definitions to quantify over all pos-
sible distributions PA since we should not assume anything about the probabil-
ities of the anonymous events. Thus, Halpern and O’Neill’s definition should
be written: ∀PA∀a∀O : P (a|O) ≤ 1/2 which makes it even clearer that it can-
not hold for all PA, for example if we take PA(a) to be very close to 1. On
the other hand, Reiter and Rubin’s definition contains only probabilities of the
form P (O|a) which are independent from PA.

In [HO03], where they define conditional anonymity, Halpern and O’Neill
make the following remark about conditional anonymity. Since the probability
that a user performs the action of interest is generally unknown, we cannot
expect that all users appear with the same probability. All that we can ensure
is that the system does not reveal any information, that is that the probability
of every user before and after making an observation should be the same. In
other words, the fraction between the probabilities of any pair of users should
not be 1, but should at least remain the same before and after the observation.

We apply the same idea to probable innocence. We start by rewriting
Definition (6.1.2) as

1 ≥ P (a|O)
P (¬a|O)

∀a ∈ A,∀O ∈ Fo (6.2)

As we already explained, if PA(a) is very high then we cannot expect this
fraction to be less than 1. Instead, we could require that it does not surpass the
corresponding fraction of the probabilities before the execution of the protocol.
So we generalize condition (6.2) in the following definition.

Definition 6.2.1 (Probable innocence 1). Let (A,O,Fo, Pc) be an anonymity
system where A is finite and let n = |A|. The system satisfies probable inno-
cence if for all distributions PA over A for all a ∈ A and for all O ∈ Fo such
that P (O) > 0, the following holds:

(n− 1)
P (a)
P (¬a)

≥ P (a|O)
P (¬a|O)

In probable innocence we consider the probability of a user to perform the
action of interest compared to the probability of all the other users together.
Definition 6.2.1 requires that the fraction of these probabilities after the exe-
cution of the protocol should be no bigger than n− 1 times the same fraction
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before the execution. The n − 1 factor comes from the fact that in probable
innocence some information about the sender’s identity is leaked. For exam-
ple, if users are uniformly distributed, each of them has probability 1/n before
the protocol and the sender could appear with probability 1/2 afterwords. In
this case, the fraction between the sender and all other users is 1

n−1 before the
protocol and becomes 1 after. Definition 6.2.1 states that this fraction can be
increased, thus leaking some information, but no more than n − 1 times its
original value.

Definition 6.2.1 generalizes Definition 6.1.2 and can be applied in cases
where the distribution of the anonymous events is not uniform. However it
still involves the probabilities of the anonymous events, which are not part
of the anonymity system. We would like a definition similar to the one of
strong anonymity (Def. 5.1.1) which involves only conditional probabilities
of observable events. To achieve this we rewrite Definition 6.2.1 using the
following transformations. In the following sums we take only events a′ ∈ A
such that P (a′) > 0, this condition is omitted from the sums to simplify the
notation.

(n− 1)
P (ai)

P (
⋃
a′ 6=a a

′)
≥ P (a|O)

P (
⋃
a′ 6=a a

′|O)
⇔

(n− 1)
P (a)∑

a′ 6=a P (a′)
≥ P (a|O)∑

a′ 6=a P (a′|O)
⇔

(n− 1)
P (a)∑

a′ 6=a P (a′)
≥

P (O|a)P (a)
P (O)∑

a′ 6=a
P (O|a′)P (a′)

P (O)

⇔

(n− 1)
∑
a′ 6=a

P (O|a′)P (a′) ≥ P (O|a)
∑
a′ 6=a

P (a′) (6.3)

We obtain a lower bound of the left clause by replacing all P (O|a′) with their
minimum. So we require that

(n− 1) min
a′ 6=a
{P (O|a′)}

∑
a′ 6=a

P (a′) ≥ P (O|a)
∑
a′ 6=a

P (a′)⇔

(n− 1) min
a′ 6=a

P (O|a′) ≥ P (O|a) (6.4)

Condition (6.4) can be interpreted as follows: given any observable event, the
probability of an anonymous event a should be balanced by the corresponding
probabilities of the other anonymous events. It would be more natural to have
the sum

∑
a′ 6=a P (O|a′) at the left side, in fact the left side of (6.4) is a lower

bound of this sum. However, since the distribution of the anonymous events
is unknown, we have to consider the “worst” case where the event a′ with the
minimum P (O|a′) has the greatest probability of occurring.

Finally, condition (6.4) is equivalent to the following definition that we
propose as a general definition of probable innocence.

Definition 6.2.2 (Probable innocence 2). Let (A,O,Fo, Pc) be an anonymity
system where A is finite and let n = |A|. The system satisfies probable inno-
cence iff

(n− 1)Pc(O|a′) ≥ Pc(O|a) ∀a, a′ ∈ A ∀O ∈ Fo
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For a finite anonymity system (A,O, pc) this definition can be written p(n−
1)pc(o|a) ≥ pc(o|a′) for all o ∈ O, a, a′ ∈ A.

The meaning of this definition is that in order for P (a)/P (¬a) to increase
at most by n− 1 times the corresponding fraction between the probabilities of
the observables must be at most n−1. Note that in strong anonymity Pc(O|a)
and Pc(O|a′) are required to be equal. In probable innocence we allow the first
to be bigger, thus losing some anonymity, but not arbitrarily bigger. It still
has to be smaller than n− 1 times the corresponding probability of any other
anonymous event.

This definition has the advantage of including only the probabilities of the
system and not those of the anonymous events, similar to the definition of
strong anonymity. It is clear that Definition 6.2.2 implies Definition 6.2.1 since
we strengthened the first to obtain the second. Since Definition 6.2.1 considers
all possible distributions of the users, the inverse implication also holds.

Theorem 6.2.3. Definitions 6.2.1 and 6.2.2 are equivalent.

Proof. Def. 6.2.2 ⇒ Def. 6.2.1 is trivial, since we strengthen the second to
obtain the first. For the inverse suppose that Def. 6.2.1 holds but Def. 6.2.2
does not, so there exist ak, al ∈ A and O ∈ Fo such that (n − 1)Pc(O|ak) <
Pc(O|al). Thus there exists ε > 0 s.t.

(n− 1)(P (O|ak) + ε) ≤ P (O|al) (6.5)

Def. 6.2.1 should hold for all distributions PA over A so we select one which
assigns a very small probability to all anonymous event except ak, al, that is
PA(ai) = δ

n−2 ∀i 6= k, l. We start from (6.3) which is a transformed version of
Def. 6.2.1, and for a = al we have:

(n− 1)
(
P (ak)P (O|ak) +∑

a′ 6=ak,al

δ
n−2P (O|a′)) ≥ P (O|al)(δ + P (ak))

P (O|a′)≤1⇒

(n− 1)(P (ak)P (O|ak) + δ) ≥ P (O|al)(δ + P (ak))
(6.5)⇒

P (ak)P (O|ak) + δ ≥ (P (O|ak) + ε)(δ + P (ak))⇒
δ(1− P (O|ak)− ε) ≥ εP (ak)

(6.5)⇒
δ ≥ εP (ak)

1− P (O|al)
n−1

(6.6)

If n > 2 then the right side of inequality (6.6) is strictly positive so it is sufficient
to take a smaller δ and we end up with a contradiction. If n = 2 then there
are no other anonymous events except ak, al and we can proceed similarly.

Examples Recall now the two examples of Figure 6.1. If we apply Definition
6.2.2 to the first one we see that it does not hold since (n− 1)pc(o1|a2) = 0 �
c

n−pf
= pc(o1|a1). This agrees with our intuition of probable innocence being

violated when user 1 is observed. In the second example the definition holds
since ∀i, j∀o : pc(o|ai) = pc(o|aj). Thus, we see that in these two examples our
definition reflects correctly the notion of probable innocence.
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6.3 Relation to other definitions

6.3.1 Definition by Reiter and Rubin

Reiter and Rubin’s definition (Def. 6.1.1) considers the probabilities of the
observables and it requires that given any anonymous event, the probability of
any observable should be at most 1/2. As we saw with the examples of Figure
6.1 what is important is not the actual probability of an observable given a
specific anonymous event, but its relation to the corresponding probabilities
under all other anonymous events.

However in Crowds there are some important symmetries. First of all the
number of the observables is the same as the number of anonymous events
(honest users) . For each user i there is an observable oi meaning that the user
i is observed. When i is the initiator, oi has a clearly higher probability than
the other observables. However, since forwarders are randomly selected, the
probability of oj is the same for all j 6= i. The same holds for the observables.
oi is more likely to happen when i is the initiator. However all other users j 6= i
have the same probability of producing it. These symmetries can be expressed
as |A| = |O| = n and:

∀i, k, l ∈ {1 . . . n}, k, l 6= i :
pc(ok|ai) = pc(ol|ai) (6.7)
pc(oi|ak) = pc(oi|al) (6.8)

Because of these symmetries, we cannot have situations similar to the ones of
Figure 6.1. On the left-hand side, for example, the probability pc(o1|a2) = 0
should be the same as pc(o3|a2). To keep the value 0 (which is the reason why
probable innocence is not satisfied) we should have 0 everywhere in the row
(except pc(o2|a2)) which is impossible since the sum of the row should be 1/2
and pc(o2|a2) ≤ 1/2.

So the reason why probable innocence is satisfied in Crowds is not the fact
that observing the initiator has low probability (what condition (6.1) ensures)
by itself, but the fact that condition (6.1), because of the symmetry, forces the
probability of observing any of the other users to be high enough.

Note that the number of anonymous users n is not the same as the number
of users m in Crowds, in fact n = m − c where c is the number of corrupted
users.

Proposition 6.3.1. For a finite anonymity systems and under the symme-
try requirements (6.7) and (6.8), Definition 6.2.2 is equivalent to RR-probable
innocence.

Proof. Due to the symmetry we show that there are only two distinct values
for pc(oi|aj). Let pc(o1|a1) = φ. Then pc(oj |a1), j > 1 are all equal because of
(6.7) and let pc(o2|a1) = . . . = pc(on|a1) = χ = 1

n−1 (1−φ). Then for the second
row we have pc(on|a2) = pc(on|a1) = χ from (6.8) so pc(oj |a2) = χ, j 6= 2 and
pc(o2|a2) = 1− (n− 1)χ = φ. Similarly for all the rows, so finally

pc(oi|aj) =

{
φ if i = j

χ if i 6= j
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Note that φ+ (n− 1)χ = 1. Assuming Def. 6.2.2 holds, we have

pc(oi|ai) ≤ (n− 1)pc(oi|aj)⇒
φ ≤ (n− 1)χ⇒
φ ≤ 1− φ⇒

pc(oi|ai) ≤ 1
2

Also, for n ≥ 3 we have

pc(oj |ai) =
1− pc(oi|ai)

n− 1
≤ 1

2
j 6= i

so Reiter and Rubin’s definition is satisfied. If n = 2 then we have pc(o1|a1) =
pc(o2|a2) = 1/2 so RR-probable innocence is again satisfied. Note that for n =
1 none of the definitions can be satisfied. Similarly for the other direction.

6.3.2 Definition of Halpern and O’Neill

One of the principles of our approach to the definition of anonymity is that it
should not depend on the probabilities of the anonymous events. The notion of
probable innocence we have proposed satisfies this principle, while the notion
proposed by Halpern and O’Neill does not, hence the two notions are different.
However, we will show that, if we assume a uniform distribution, then the two
notions coincide.

Proposition 6.3.2. If we restrict Definition 6.2.1 to consider only a uniform
distribution on A, that is a distribution Pu s.t. Pu(a) = 1/|A|, a ∈ A, then it
becomes equivalent to HO-probable innocence.

Proof. Trivial. Since all anonymous events have the same probability then the
left side of definition 6.2.1 is equal to 1.

Note that the equivalence of Def. 6.2.1 and Def. 6.2.2 is based on the fact
that the former ranges over all possible distributions PA. Thus Def. 6.2.2 is
strictly stronger than the one of Halpern and O’Neill.

6.3.3 Strong anonymity

Since strong anonymity is a stronger notion that probable innocence, we would
expect the former to imply the latter. This is indeed true.

Proposition 6.3.3. Strong anonymity implies probable innocence.

Proof. Trivial. If Definition 5.1.1 holds then Pc(O|a) = Pc(O|a′) for all a, a′ ∈
A and O ∈ Fo.

The relation between the various definitions of anonymity is summarized in
Figure 6.2. The classification in columns is based on the type of probabilities
that are considered. The first column considers the probability of different
anonymous events, the second the probability of the same user before and after
an observation and the third the probability of the observables. Concerning
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HO-strong anonymity Conditional anonymity Strong anonymity
P (a|O) = P (a′|O) uniform⇐⇒ P (a|O) = P (a) ⇐⇒ Pc(O|a) = Pc(O|a′)

⇓ ⇓
HO-Probable Inn. Probable Inn. (Def. 6.2.1) Probable Inn. (Def. 6.2.2)

1/2 ≥ P (a|O) uniform⇐⇒ (n− 1) P (a)
P (¬a) ≥

P (a|O)
P (¬a|O) ⇐⇒ (n− 1)Pc(O|a′) ≥ Pc(O|a)

m if symmetric

RR-Probable Inn.
1/2 ≥ pc(o|a)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Probab. of anon. events Probabilities before and
after the observation Probabilities of observables

Figure 6.2: Relation between the various anonymity definitions

the rows, the first corresponds to the strong case and the second to probable
innocence. It is clear from the table that the new definition is to probable
innocence as conditional anonymity is to HO-strong anonymity.

6.4 Protocol composition

In this section we consider the case of protocol composition, described in Sec-
tion 4.2, and we examine the anonymity guarantees of the resulting protocol
with respect to the composed ones. We have already shown in Section 5.3 that
the composition of two strongly anonymous systems is also strongly anony-
mous. This conforms to the intuition that a strongly anonymous protocol
leaks no information at all. On the other hand, a protocol satisfying prob-
able innocence is allowed to leak information to some extent. Now consider
two systems S1, S2 where S1 is strongly anonymous and S2 satisfies probable
innocence. Intuitively, since S1 leaks no information we would expect the com-
posed system S1;S2 to leak as much information as S2, so it should also satisfy
probable innocence.

Proposition 6.4.1. Let S1 = (A,O1,Fo1, Pc1), S2 = (A,O2,Fo2, Pc2) be two
anonymity systems such that S1 is strongly anonymous and S2 satisfies prob-
able innocence. The protocol S1;S2 = (A,O,Fo, Pc) also satisfies probable in-
nocence.

Proof. From the anonymity hypotheses of S1, S2 we have for all a, a′ ∈ A:

Pc1(O1|a) = Pc1(O1|a′) ∀O1 ∈ Fo1 (6.9)
(n− 1)Pc2(O2|a) = Pc2(O2|a′) ∀O2 ∈ Fo2 (6.10)
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So for each observable O ∈ F of S1;S2 we have for all a, a′ ∈ A:

(n− 1)Pc(O|a) = (n− 1)Pc1(proj1(O)|a)Pc2(proj2(O)|a)

= (n− 1)Pc1(proj1(O)|a′)Pc2(proj2(O)|a) (6.9)

≥ (n− 1)Pc1(proj1(O)|a′)Pc2(proj2(O)|a′) (6.10)

= Pc(O|a′)

However, if both S1, S2 satisfy probable innocence, S1;S2 does not neces-
sarily satisfy it since the leak of both systems together might be bigger than
probable innocence allows. We demonstrate this issue in the case of the n-
repetition Sn of a protocol S. We examine its anonymity guarantees compared
to those of S, obtaining a general result for a class of attacks that appear in
protocols such as Crowds.

Consider a finite system with three anonymous events and one observable o
with probabilities pc(o|a1) = 1/2 and pc(o|a2) = pc(o|a3) = 1/4. This system
satisfies Definition 6.2.2 thus it provides probable innocence. If we repeat the
protocol two times then the probabilities for the event oo will be pc(oo|a1) = 1/4
and pc(oo|a2) = pc(oo|a3) = 1/16, but now Definition 6.2.2 is violated. In the
original protocol the probability of o under a1 was two times bigger than the
corresponding probability under the other anonymous events, but after the
repetition it became 4 times bigger and Definition 6.2.2 does not allow this.

In the general case let (A,F ,Fo, Pc) be an anonymity system. Sm satisfies
probable innocence if (by definition) for all O ∈ Fon, a, a′ ∈ A

(n− 1)P (O|a) ≥ P (O|a′)⇒

(n− 1)
n∏
i=1

Pc(proji(O)|a) ≥
n∏
i=1

Pc(proji(O)|a′) (6.11)

The following lemma states that it is sufficient to check only the events of the
form (O, . . . , O) (the same observable event repeated m times), and expresses
the probable innocence of Sn using probabilities of events of S.

Lemma 6.4.2. Let S = (A,F ,Fo, Pc) be an anonymity system. Sn satisfies
probable innocence if and only if:

(n− 1)Pnc (Os|a) ≥ Pnc (Os|a′) ∀Os ∈ Fo, ∀a, a′ ∈ A (6.12)

Proof. (only if) We can use equation (6.11) with O = (Os, . . . , Os) and the
definition of proji to obtain (6.12).
(if) We can write (6.12) as n

√
n− 1Pc(Os|a) ≥ Pc(Os|a′). Let O ∈ Fon be an

observable event of Sn. Since proji(O) ∈ Fo, by applying this inequality to all
proji(O) we have:

n
√
n− 1Pc(proj1(O)|a) ≥ Pc(proj1(O)|a′)

...
n
√
n− 1Pc(projn(O)|a) ≥ Pc(projn(O)|a′)

Then by multiplying these inequalities we obtain (6.11).
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Lemma 6.4.2 explains our previous example. The probability pc(o|a2) = 1/4
was smaller than pc(o|a1) = 1/2 but sufficient to provide probable innocence.
But when we raised these probabilities to the power of two, 1/16 was too small
so the event oo would expose a1. In fact, if we allow an arbitrary number of
repetitions equation (6.12) can never hold, unless the probability of all observ-
able events under any anonymous event is the same, that is if the system is
strongly anonymous.

Theorem 6.4.3. Let S = (A,F ,Fo, Pc) be an anonymity system. Sn satisfies
probable innocence for all n ≥ 1 if and only if S is strongly anonymous.

Proof. (if) If S is strongly anonymous then by Corollary 5.3.2 Sn is also
strongly anonymous so by Proposition 6.3.3 it satisfies probable innocence.
(only if) Suppose S is not strongly anonymous so there exist O ∈ Fo, a, a′ ∈ A
such that Pc(O|a′) > Pc(O|a). Assuming Pc(O|a) > 0 we rewrite equation
(6.12) as:

n− 1 ≥
(
Pc(O|a′)
Pc(O|a)

)n
but the condition above cannot hold for all n since αn →∞ when n→∞ for
α > 1. If Pc(O|a) = 0 it is easy to show that Pc(O|a′) must be also 0 which is
again a contradiction.

6.5 Application to anonymity protocols

6.5.1 Crowds

Reiter and Rubin have shown in [RR98] that Crowds satisfies RR-probable
innocence if m ≥ pf

pf−1/2 (c + 1). Thus we already know that Crowds satisfies
the new definition of probable innocence since Proposition 6.3.1 states that
the new definition is equivalent to RR-probable innocence under a symmetry
property that Crowds satisfies. In this section, we give an alternative proof of
probable innocence using directly the new definition.

Consider an instance of Crowds with m users of which c are corrupted and
let n = m − c. We assume that there is at least one corrupted user (c ≥ 1).
Similarly to the discussion in Section 6.1.1, let Ai denote that “user i is the
originator” and Di is the event “the user i was observed by a corrupted member
(appears in the path right before the corrupter member)”. Also let H denote
the event “some user was detected by a corrupted member” where p(H) > 0
since we assumed c ≥ 1. As already discussed in the proof of Proposition 6.3.1,
due to the symmetry of Crowds, there are only two distinct values for p(Di|Ai)
so let p(Di|Ai) = X and p(Dj |Ai) = Y, i 6= j.

We create a finite anonymity system Crowds(m, c, pf ) = (A,O, pc) as fol-
lows:

• A = {a1, . . . , an} is the set of honest crowd members

• O = {o1, . . . , on} where oi means that the user i was detected by a
corrupted user.

• pc(oi|ai) =

{
X/p(H) if i = j

Y/p(H) otherwise
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This system considers only the honest users (there is no anonymity requirement
for corrupted users) under the assumption that a user is always detected, so all
probabilities are conditioned on H (if no user is detected then then anonymity
is not an issue). We now show that this system satisfies probable innocence.

Theorem 6.5.1. The anonymity system Crowds(m, c, pf ), pf ≥ 1/2, satisfies
probable innocence if and only if m ≥ pf

pf−1/2 (c+ 1).

Proof. Assume that user i is the initiator. In order for i to be detected a path
must be formed in which i is right before a corrupted user. There are three
possibilities for this path: either i forwards the message directly to the attacker,
or he forwards it to himself and a sub-path starting from i is created, or he
forwards the message to some honest user j and then a sub-path starting from
j is created. Since users are selected uniformly, X can be computed as:

X = c
m + 1

m pf X + n−1
m pf Y

reflecting the three possibilities for the path. Note that if he forwards the
message to himself (probability 1/m) then the probability to form a sub-path
starting from i is pfX since the probability to keep forwarding in the next
round is pf . Similarly for Y :

Y = 1
m pf X + n−1

m pf Y

Solving the above system of equations we get

X = c
1− n−1

m pf

m− npf
Y = X − c

m

And from the definition of probable innocence, assuming n > 2:

(n− 1)pc(oj |ai) ≥ pc(oi|ai) ⇔
(n− 1)Y ≥ X ⇔

(n− 1)(X − c

m
) ≥ X ⇔

X ≥ c(n− 1)
m(n− 2)

⇔

c
1− n−1

m pf

m− npf ≥
c(n− 1)
m(n− 2)

⇔

1 +
pf

m− npf ≥ 1 +
1

n− 2
⇔

2(n− 1)pf ≥ m ⇔
m ≥ pf

pf − 1/2
(c+ 1)

For n ≤ 2 the condition (n− 1)Y ≥ X cannot be satisfied.

As expected by the equivalence of the two definitions, we found the same
condition as Reiter and Rubin.
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Multiple paths attack

As stated in the original paper of Crowds, after creating a random path to
a server, a user should use the same path for all the future requests to the
same server. However there is a chance that some node in the path leaves
the network, in which case the user has to create a new path using the same
procedure. In theory the two paths cannot be linked together, that is the
attacker cannot know that it is the same user who created the two paths. In
practice, however, such a link could be achieved by means unrelated to the
protocol such as the url of the server, the data of the request etc. By linking
the two requests the attacker obtains more observables that he can use to
track down the originator. Since the attacker also participates in the protocol
he could voluntarily break existing paths that pass through him in order to
force the users to recreate them.

If S is an anonymity system that models Crowds, then the n-paths ver-
sion corresponds to the n-repetition of S, which repeats the protocol n times
with the same user. From Proposition 6.4.3 and since Crowds is not strongly
anonymous, we have that probable innocence cannot be satisfied if we allow
an arbitrary number of paths. Intuitively this is justified. Even if the attacker
sees the event o1 meaning that user 1 was detected it could be the case (with
non-trivial probability) that user 2 was the real originator, he sent the message
to user 1 and the latter sent it to the attacker. However, if there are ten paths
and the attacker sees (o1, . . . , o1) (ten times) then it is much more unlikely that
all of the ten times user 2 sent the message to user 1 and user 1 to the attacker.
It appears much more likely that user 1 was indeed the originator.

This attack had been foreseen in the original paper of Crowds and further
analysis was presented in [WALS02, Shm04]. However our result is more general
since we prove that probable innocence is impossible for any protocol that
allows “multiple paths”, in other words that can be modeled as an n-repetition,
unless the original protocol is strongly anonymous. Also our analysis is simpler
since we did not need to calculate the actual probabilities of any observables
in a specific protocol.

6.5.2 Dining cryptographers

The dining cryptographers protocol is usually connected to strong anonymity
since it satisfies this property under the assumption of fair coins, as shown
in Section 5.2. In practice, the users in a dining cryptographers protocol can
use any common secret between pairs of users, instead of coins. These secrets
would range over a set of possible values and the same analysis would prove
that the protocol is strongly anonymous, assuming that the secrets are selected
uniformly from their set of values. If the secrets’ distribution is not uniform,
or if the attacker can enforce a different distribution (which is not unrealistic
in practice), then strong anonymity is immediately violated. This would cor-
respond to having unfair coins in the original setting. However, if the bias of
the coins is not very big then intuitively we would expect a weaker notion of
anonymity, like probable innocence, to hold, giving at least some anonymity
guarantees to the users. So it is interesting to find sufficient and necessary
conditions to satisfy probable innocence, which is the topic of this section.

We consider again the analysis of Section 5.2, and we refer to the beginning
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of that section for the notation.
We first give a sufficient condition for probable innocence for any graph Gc.

Theorem 6.5.2. The anonymity system S(Gc) = (A,O, pc) corresponding to
the connected component Gc satisfies probable innocence if

pi(v) ≥ 1
1 + m

√
n− 1

∀i ∈ {1, . . . ,m} ∀v ∈ {0, 1} (6.13)

where n = |A|, m is the number of edges (coins) of Gc and pi(0), pi(1) are the
probabilities of coin i giving head or tail respectively.

Proof. Fix an observable ~o ∈ O and a cryptographer ai ∈ A. To compute
the probability pc(~o|ai) we have to compute all the possible coin configurations
that will produce ~o as output. These will be given by the following system of
linear equations in GF(2):

B~x = ~o⊕ ~ri

Following the same reasoning as in the proof of Theorem 5.2.1, we derive that
the system is solvable and has 2m−(n−1) solutions. Let X (ai, ~o) be the set of
solutions for the specific cryptographer ai and observable ~o.
X (ai, ~o) contains all the coin configurations that produce the output ~o, thus

the probability pc(~o|ai) is

pc(~o|ai) =
∑

~x∈X (ai,~o)

m∏
i=1

pi(xi)

To prove that probable innocence holds we need to show that for all ai, aj ∈ A
and ~o ∈ O:

(n− 1)pc(~o|ai) ≥ pc(~o|aj)⇔

(n− 1)
∑

~x∈X (ai,~o)

m∏
i=1

pi(xi) ≥
∑

~x∈X (aj ,~o)

m∏
i=1

pi(xi) (6.14)

and for this it is sufficient that

(n− 1)2m−(n−1) min
~x∈X (ai,~o)

m∏
i=1

pi(xi) ≥ 2m−(n−1) max
~x∈X (aj ,~o)

m∏
i=1

pi(xi)⇔ (6.15)

(n− 1)
m∏
i=1

pi(yi) ≥
m∏
i=1

pi(zi) (6.16)

where ~y ∈ X (ai, ~o), ~z ∈ X (aj , ~o) are the vectors than give the min and max val-
ues in the left and right-hand side of inequality (6.15) respectively. It remains
to prove inequality (6.16). From (6.13) it is easy to show that m

√
n− 1pi(v) ≥

pi(u) for all v, u ∈ {0, 1}, so we have

(n− 1)
m∏
i=1

pi(yi) =
m∏
i=1

m
√
n− 1 pi(yi)

≥
m∏
i=1

pi(zi)
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Note that the above theorem gives a sufficient but not a necessary condition
for probable innocence on arbitrary graphs, since the inequality between the
sums in (6.14) could hold without satisfying inequality (6.15). So in certain
types of graphs probable innocence could hold for even more biased coins than
the ones allowed by the previous theorem. A sufficient and necessary condition
is harder to obtain since we have to take into account all possible connection
graphs.

In the rest of this section we obtain such conditions by restricting to specific
types of graphs and to the case where all coins are identical.

Chain graphs A graph is a called a chain if it is connected, all vertexes
have degree at most 2 and at least one vertex has degree 1. Such graphs have
exactly n− 1 edges, which is the minimum number of edges that a connected
graph can have, so intuitively it offers the least anonymity protection. Indeed,
we show that the condition of Theorem 6.5.2 is sufficient and necessary for
chain graphs.

Theorem 6.5.3. The anonymity system S(Gc) = (A,O, pc) where Gc is a
chain graph satisfies probable innocence if and only if

p(v) ≥ 1
1 + n−1

√
n− 1

∀v ∈ {0, 1} (6.17)

where n = |A| and p(0), p(1) are the probabilities of a coin giving head or tail
respectively (the same for all coins).

Proof. The fact that condition (6.17) is sufficient is an application of Theorem
6.5.2 since m = n− 1 on a chain graph. Now suppose that probable innocence
holds and consider the observable ~o = (1, 0, . . . , 0). Since m = n − 1, for each
user ai there is only one solution to the system of equations B~x = ~o⊕ ~ri. For
a1 (the first user of the chain) the only solution is ~y = (0, . . . , 0) and for an
(the last user of the chain) the only solution is ~z = (1, . . . , 1). So

pc(~o|a1) =
n−1∏
i=1

p(yi) = pn−1(0)

pc(~o|an) =
n−1∏
i=1

p(zi) = pn−1(1)

and since probable innocence holds we have

(n− 1)pc(~o|a1) ≥ pc(~o|an)⇒
(n− 1)pn−1(0) ≥ pn−1(1)⇒

n−1
√
n− 1 p(0) ≥ 1− p(0)⇒

p(0) ≥ 1
1 + n−1

√
n− 1

and similarly for p(1).
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Cycle graphs A graph is called a cycle if its vertices are connected in a
circular fashion, that is there are n edges connecting vertices i and i + 1, for
1 ≤ i ≤ n − 1 with an extra edge connecting vertices 1 and n. A cycle has
one more edge than a chain so we would expect to offer better anonymity
guarantees. We now give a more relaxed condition than the one of Theorem
6.5.2 that is both sufficient and necessary for cycle graphs.

Theorem 6.5.4. The anonymity system S(Gc) = (A,O, pc) where Gc is a
cycle graph satisfies probable innocence if

p(v) ≥ 1− 1

1 +
(
n− 1−√n(n− 2)

) 2
n

∀v ∈ {0, 1} (6.18)

where n = |A| and p(0), p(1) are the probabilities of a coin giving head or tail
respectively (the same for all coins). If n is even then this is also a necessary
condition.

Proof. We fix a user ai and observable ~o. Since m = n there are exactly 2
solutions to the system of equations B~x = ~o ⊕ ~ri. Moreover, all vertices have
exactly 2 adjacent edges so by symmetry inverting all coins doesn’t affect the
output, thus the solutions come in pairs (~x, ~x ⊕ ~1). To simplify the notation,
let h = p(0), t = p(1). Let ~x be a solution of the system above, we have

pc(~o|ai) =
n∏
i=1

p(xi) +
n∏
i=1

p(xi ⊕ 1) = hktn−k + hn−ktk

where k ≥ n/2 is the number of 0s in ~x (if k < n/2 we take k′ = n− k ≥ n/2
and we obtain the same form). Probable innocence requires that

(n− 1)pc(~o|ai) ≥ pc(~o|aj)⇔
(n− 1)(hktn−k + hn−ktk) ≥ hltn−l + hn−ltl

where k, l ≥ n/2 are the number of 0s in the solution of the system for ai, aj
respectively. Without loss of generality we assume h ≥ t (the other case can
be treated symmetrically) and let α = t/h ≤ 1. We divide both sides by hn:

(n− 1)(hk−ntn−k + h−ktk) ≥ hl−ntn−l + h−ltl ⇔
(n− 1)(αk + αn−k) ≥ αl + αn−l (6.19)

We can show that

αn + 1 ≥ αn−1 + α ≥ . . . ≥ αn/2 + αn/2 (6.20)

so (6.19) is satisfied for any k, l ∈ {n2 , . . . , n} if and only if

(n− 1)(αn/2 + αn/2) ≥ αn + 1⇔
(n− 1) 2 z ≥ z2 + 1

where z = αn/2. Solving z2 − 2 (n − 1) z + 1 = 0, z ≤ 1 we get zo = n − 1 −√
n(n− 2). So the inequality above holds iff z ≥ zo that is α ≥ z2/n

o . Finally

t = 1− 1
1 + α

≥ 1− 1

1 + z
2/n
o

= 1− 1

1 +
(
n− 1−√n(n− 2)

) 2
n
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and the same for h since h ≥ t. If n is even then there will be some ai, aj
such that k, l are exactly n/2, n respectively, so condition (6.18) is necessary.
If n is odd then (6.20) still holds so condition (6.18) is sufficient, even though
probable innocence could hold with even more biased coins.

Theorem 6.5.4 provides a more relaxed condition for probable innocence
that the more general Theorem 6.5.2. For example, for a cycle of 4 vertices,
the latter requires p(0) ≥ 0.43 while the former requires p(0) ≥ 0.29. So we see
that even with strongly biased coins the dining cryptographers offers non-trivial
anonymity guarantees, namely probable innocence.

It is also worth noting that since m ≥ n − 1 (the graph is connected)
the right-hand side in all the above conditions converges to 1/2 as n → ∞.
This means that as the number of users increases, the condition for the dining
cryptographers to satisfy probable innocence approximates the requirement of
fairness of the coins, which is the condition for strong anonymity to be satisfied.
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Seven

An information-theoretic definition of
anonymity

In the previous chapters we have formalized two properties of anonymity sys-
tems, namely strong anonymity and probable innocence. The first offers “per-
fect” anonymity guarantees in the sense that it allows no information about
the anonymous events to be leaked. The second is weaker, it allows the at-
tacker to obtain some knowledge about the anonymous events but still allows
a user to plead “not guilty” in the sense that it appears less probable that he
performed the action of interest than that any of the other users together did.
Strong anonymity is satisfied by the dining cryptographers protocol with fair
coins while probable innocence is satisfied by Crowds, under a condition on
the number of corrupted users, and by the dining cryptographers with biased
coins, under a condition on the probability distribution of the coins.

These properties are very useful for the analysis of anonymity systems, how-
ever they have an important disadvantage: they are “black or white” in the
sense than they can either be satisfied or violated by a particular protocol, but
they do not provide an indication of “how much” they are satisfied or violated.
Consider for example probable innocence in the case of the dining cryptogra-
phers. For 4 users the property could hold for p(heads) ≥ 0.29, that is an in-
stance with p(heads) = 0.29 and an instance with p(heads) = 0.49 both satisfy
probable innocence, however intuitively the second offers much stronger ano-
nymity than the first. The same happens for protocols with p(heads) < 0.29,
they all violate probable innocence but clearly an instance with p(heads) = 0
is much worse than one with p(heads) = 0.28.

Due to this issue and since both protocols examined so far have parameters
that affect their anonymity, it seems reasonable to search for a definition of
anonymity that maps protocols to a continuous scale and which is sensitive
to the value of these parameters. Such a definition would give us a better
understanding of the behavior of anonymity protocols and would allow us to
compare protocols of the same “family”, for example protocols that both satisfy
or violate probable innocence. Moreover, from an engineering point of view,
such a definition would allow us to balance the trade-off between anonymity
and other features of the protocols, such as performance or availability, and
fine-tune the protocol’s parameters to obtain the best overall result.
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To obtain such a quantitative definition of anonymity, we consider a frame-
work in which anonymity systems are interpreted as noisy channels in the
information-theoretic sense, and we explore the idea of using the notion of ca-
pacity as a measure of the loss of anonymity. This idea was already suggested
by Moskowitz, Newman and Syverson, in their analysis of the covert channel
that can be created as a result of imperfect anonymity [MNCM03, MNS03].

Contribution The contribution of this chapter consists of the following:

• We define a more general notion of capacity, that we call conditional
capacity, which models the case in which some loss of anonymity is allowed
by design.

• We discuss how to compute capacity and conditional capacity when the
anonymity protocol satisfies certain symmetries.

• We compare the new definition with various probabilistic notions of ano-
nymity given in literature, in particular strong anonymity and probable
innocence. Moreover, we show that the definition of probable innocence
introduced in Chapter 6 corresponds to a certain information-theoretic
bound.

• We use the new definition to compare different network configurations
for the dining cryptographers protocol. More precisely we show if we
add a new edge (coin) to any connection graph with arbitrary coins,
the anonymity degree of the corresponding system increases or remains
the same. Using this property, we give a stronger version of Chaum’s
result, namely we prove that to achieve strong anonymity in a connected
component it suffices that the component have a spanning tree consisting
of fair coins.

• We show how to compute the matrix of a protocol using model checking
tools. We demonstrate our ideas in the dining cryptographers and crowds
protocols, where we show how the parameters of each protocol affect its
anonymity.

Plan of the chapter In Section 7.1 we justify our view of protocols as chan-
nels and (loss of) anonymity as capacity and conditional capacity, and we give
a method to compute these quantities in special symmetry cases. In Section
7.3, we relate our framework to other probabilistic approaches to anonymity.
In Section 7.4 we discuss the operation of adding a coin to a dining cryptog-
raphers system, and we prove the monotonicity of the degree of anonymity
with respect to this operation, which allows us to strengthen Chaum’s result.
In Section 7.5, we illustrate with specific examples (the dining cryptographers
and Crowds) how to compute the channel matrix and the degree of anonymity
for a given protocol, possibly using automated tools. Finally, in section 7.6 we
discuss related work.
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7.1 Loss of Anonymity as Channel Capacity

Let S = (A,O, pc) be an anonymity system. S together with a distribution
pA on A define an anonymity instance and induce a discrete probability dis-
tribution p on A×O as p(a, o) = pA(a)pc(o|a). In the rest of this chapter we
will use p to denote this induced distribution, where the anonymity system and
the distribution pA should be clear from the context. For simplicity we will
use p(a) for p([a]) = pA(a) and p(o|a) for p([o]|[a]) = pc(o|a). We define two
random variables A : A × O 7→ A and O : A × O 7→ O as A((a, o)) = a and
O((a, o)) = o. Their probability mass functions will be P ([A = a]) = p(a) and
P ([O = o]) respectively.

We can now use tools from information theory to reason about the informa-
tion that the adversary obtains from the protocol, these concepts were briefly
presented in Section 2.2. The entropy H(A) of A gives the amount of uncer-
tainty about the anonymous events, before executing the protocol. The higher
the entropy is the less certain we are about the outcome of A. After the ex-
ecution, however, we also know the actual value of O. Thus, the conditional
entropy H(A|O) gives the uncertainty of the attacker about the anonymous
events after performing the observation. To compare these two entropies, we
consider the mutual information I(A;O) which measures the information about
A that is contained in O. This quantity is exactly what we want to minimize.
In the best case it is 0, meaning that we can learn nothing about A by observ-
ing O (in other words H(A|O) is equal to H(A)). In the worst case it is equal
to H(A) meaning that all the uncertainty about A is lost after the observation,
thus we can completely deduce the value of A (H(A|O) is 0).

To compute I(A;O) we need the joint distribution p(a, o) which depends on
pA(a) and pc(o|a). Similarly to strong anonymity and probable innocence, we
want our definition to depend only on the conditional probabilities pc(o|a) and
not on the distribution pA of the anonymous events, since we only consider the
former to be a characteristic of the protocol while the latter models the users’
intentions during the execution. This view of the system in isolation from the
users brings us to consider the protocol as a device that, given a ∈ A as input,
it produces an output in O according to a probability distribution pc(·|a). This
concept is well investigated in information theory, where such a device is called
a channel, and it is described by the matrix whose rows represent the elements
of A, the columns the elements of O, and the value in position (a, o) is the
conditional probability pc(o|a). An anonymity channel is shown in Figure 7.1.
Note that this is not a “real” channel, in the sense that a is not data that
is transmitted from a sender to a receiver, but a modeling tool to define our
degree of anonymity. Since we are interested in the worst possible case, we
adopt the definition of the loss of anonymity as the maximum value of I(A;O)
over all possible input distributions, that is the capacity of the corresponding
channel.

Definition 7.1.1. Let S = (A,O, pc) be an anonymity protocol. The loss of
anonymity C(S) of the protocol is defined as

C(S) = max
pA(a)

I(A;O)

where the maximum is taken over all possible input distributions.
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Figure 7.1: An anonymity channel

Figure 7.2: A simple elections protocol

The loss of anonymity measures the amount of information about A that
can be learned by observing O in the worst possible distribution of anonymous
events. If it is 0 then, no matter what is the distribution of A, the attacker can
learn nothing more by observing the protocol. In fact, as we will see in section
7.3.1, this corresponds exactly to strong anonymity. However, as we discuss in
section 7.3.3, our framework also captures weaker notions of anonymity.

As with entropy, channel capacity is measured in bits. Roughly speaking,
1 bit of capacity means that after the observation A will have one bit less of
entropy, in another words the attacker will have reduced the set of possible
anonymous events by a factor of 2, assuming a uniform distribution.

7.1.1 Relative Anonymity

So far, we have assumed that ideally no information about the anonymous
events should be leaked. However, there are cases where some information
about the anonymous events is allowed to be revealed by design, without this
leak being considered a flaw of the protocol. Consider, for example, the case of
a simple elections protocol, displayed in figure 7.2. For simplicity we assume
that there are only two candidates c and d, and that each user always votes
for one of them, so an anonymous event can be represented by the subset of
users who voted for candidate c. In other words, A = 2V where V is the set of
voters. The output of the protocol is the list of votes of all users, however, in
order to achieve anonymity, the list is randomly reordered, using for example
some MIX technique1. As a consequence, the attacker can see the number
of votes for each candidate, although he should not be able to find out who
voted for whom. Indeed, determining the number of votes for candidate c (the
cardinality of a), while concealing the vote expressed by each individual (the
elements that constitute a), is the purpose of the protocol.

So it is clear that after the observation only a fraction of the anonymous
events remains possible. Every event a ∈ A with |a| 6= n where n is the number

1In MIX protocols an agent waits until it has received requests from multiple users and
then forwards the requests in random order to hide the link between the sender and the
receiver of each request.
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of votes for candidate c can be ruled out. As a consequence H(A|O) will be
smaller than H(A) and the capacity of the corresponding channel will be non-
zero, meaning that some anonymity is lost. In addition, there might be a loss of
anonymity due to other factors, for instance, if the reordering technique is not
uniform. However, it is undesirable to confuse these two kinds of anonymity
losses, since the first is by design and thus acceptable. We would like a notion
of anonymity that factors out the intended loss and measures only the loss that
we want to minimize.

Let R be a set of “revealed” values, that is suppose that in each execution
exactly one value r ∈ R is revealed to the attacker. In the example of the
elections protocol, the revealed value is the cardinality of a soR = {0, . . . , |V |}.
Also let pR(·|a, o) be a collection of distributions on R, for each a ∈ A, o ∈ O.
Now given an anonymity system (A,O, pc) and a distribution pA on A we can
define a probability distribution p on A×O ×R as

p(a, o, r) = pA(a) pc(o|a) pR(r|o, a)

As usual we write p(r) for p([r]) where [r] = A × O × {r}. We also define a
random variable R : A×O ×R 7→ R as R(a, o, r) = r, with probability mass
function P ([R = r]) = p(r).

Then we use R to cope with the intended anonymity loss as follows. Since
we allow the value of R to be revealed by design, we can consider that it is
known even before executing the protocol. So, H(A|R) gives the uncertainty
about A given that we know R and H(A|R,O) gives the uncertainty after the
execution of the protocol, when we know both R and O. By comparing the two
we retrieve the notion of conditional mutual information I(A;O|R) defined as

I(A;O|R) = H(A|R)−H(A|R,O)

So, I(A;O|R) is the amount of uncertainty on A that we lose by observing O,
given that R is known. Now we can define the notion of conditional capacity
C|R which will give us the relative loss of anonymity of a protocol.

Definition 7.1.2. Let (A,O, pc) be an anonymity system, R a set of revealed
values and pR(·|a, o) a collection of probability distributions on R. The relative
loss of anonymity of the protocol with respect to R is defined as

C|R = max
pA

I(A;O|R)

where the maximum is taken over all possible input distributions.

Partitions: a special case of relative anonymity

An interesting special case of relative anonymity is when the knowledge of
either an anonymous event or an observable event totally determines the value
of R. In other words, both A and O are partitioned into subsets, one for
each possible value of R. The elections protocol of the previous section is an
example of this case. In this protocol, the value r of R is the number of votes
for candidate c. This is totally determined by both anonymous events a (r is
the cardinality of a) and observable events o (r is the number of c’s in o). So
we can partition A in subsets A0, . . . ,An such that |a| = n for each a ∈ An,
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and similarly for O. Notice that an anonymous event a ∈ Ai produces only
observables in Oi, and vice versa.

In this section we show that such systems can be viewed as the composition
of smaller, independent sub-systems, one for each value of R.

We say that R is a deterministic function of X if p(r|x) is 0 or 1 for all
r ∈ R and x ∈ X . In this case we can partition X as follows

Xr = {x ∈ X | p(r|x) = 1}
Clearly the above sets are disjoint and their union is X .

Theorem 7.1.3. Let (A,O, pc) be an anonymity system, R a set of revealed
values and pR(·|a, o) a collection of probability distributions on R. If R is a
deterministic function of both A and O, under some non-zero input distribution
pA

2, then the transition matrix of the protocol is of the form

Or1 Or2 · · · Orl

Ar1 Mr1 0 . . . 0

Ar2 0 Mr2 . . . 0
...

...
...

. . .
...

Arl
0 0 . . . Mrl

and
C|R ≤ d ⇔ Ci ≤ d,∀i ∈ 1..l

where Ci is the capacity of the channel with matrix Mri .

Proof. First we show that the protocol matrix has the above form, that is
p(o|a) = 0 if a ∈ Ar, o ∈ Or′ with r 6= r′. If p(o) = 0 then (since pA is non-
zero) then whole column of o is zero and we are finished. Otherwise, since R is
a deterministic function of A,O we have p(r|a) = 1 and p(r|o) = 0. Then (we
use the [·] notation to make set operations clearer)

p([r] ∩ [a]|o) = 0⇒ p([r] ∩ [o]|a)
p(a)
p(o)

= 0⇒ p([r] ∩ [o]|a) = 0

Finally

p([r] ∪ [o]|a) = p(r|a) + p(o|a)− p([r] ∩ [o]|a) = 1 + p(o|a)

so p(o|a) = 0 otherwise p([r] ∪ [o]|a) would be greater than 1.
Now we show that C|R ≤ d iff Ci ≤ d,∀i ∈ 1..l where Ci is the capacity of

the channel with matrix Mri
, constructed by taking only the rows in Ari

and
the columns in Ori

.
(⇒) Assume that C|R ≤ d but ∃i : Ci > d. Then there exists a distribution

pi over Ari such that I(Ari ;Ori) > d where Ari , Ori are the input and output
random variables of channel Mri . We construct a distribution over A as follows

p(a) =

{
pi(a) if a ∈ Ari

0 otherwise

2We require pA to assign non-zero probability to all users so that p(r|o) can be defined,
unless the whole column is zero. Note that if R is a deterministic function of O under some
non-zero distribution, it is also under all distributions.
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It is easy to see that under this distribution, I(A;O|R) = I(Ari
|Ori

) which is
a contradiction since I(A;O|R) ≤ C|R ≤ d < I(Ari

|Ori
).

(⇐) The idea is that for each input distribution p(a) we can construct
an input distribution pr(a) for each sub-channel Mr and express I(A;O|R) in
terms of the mutual information of all sub-channels. We write I(A;O|R) as:

I(A;O|R)

= H(A|R)−H(A|R,O)

= −
∑
r∈R

p(r)
∑
a∈A

p(a|r) log p(a|r) +
∑
r∈R
o∈O

p(r, o)
∑
a∈A

p(a|r, o) log p(a|r, o)

= −
∑
r∈R

p(r)
[∑
a∈A

p(a|r) log p(a|r)−
∑
o∈O

p(o|r)
∑
a∈A

p(a|r, o) log p(a|r, o)
]

Moreover, we have

p(a|r) =

{
p(a)
p(r) if a ∈ Ar
0 otherwise

p(o|r) =

{
p(o)
p(r) if o ∈ Or
0 otherwise

Also p(a|r, o) = p(a|o) if o ∈ Or and p(a|r, o) = 0 if a /∈ Ar. Thus in the above
sums the values that do not correspond to each r can be eliminated and the
rest can be simplified as follows:

I(A;O|R) = −
∑
r∈R

p(r)
[ ∑
a∈Ar

p(a)
p(r)

log
p(a)
p(r)

−
∑
o∈Or

p(o)
p(r)

∑
a∈Ar

p(a|o) log p(a|o)
]

(7.1)
Now for each r ∈ R we define a distribution pr over Ar as follows:

pr(a) =
p(a)
p(r)

It is easy to verify that this is indeed a probability distribution. We use pr
as the input distribution in channel Mr and since, by construction of Mr,
pr(o|a) = p(o|a) we have

pr(o) =
∑
a∈Ar

pr(a)pr(a|o) =
∑
a∈Ar

p(a)
p(r)

p(a|o) =
p(o)
p(r)

Now equation (7.1) can be written:

I(A;O|R)

=
∑
r∈R

p(r)
[
−
∑
a∈Ar

pr(a) log pr(a) +
∑
o∈Or

pr(o)
∑
a∈Ar

pr(a|o) log pr(a|o)
]

=
∑
r∈R

p(r)
[
H(Ar)−H(Ar|Or)

]
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=
∑
r∈R

p(r)I(Ar;Or)

≤
∑
r∈R

p(r)d

= d

Where Ar, Or are the input and output random variables of channel Mr. Fi-
nally, since I(A;O|R) ≤ d for all input distributions we have C|R ≤ d.

7.2 Computing the channel’s capacity

For arbitrary channels, there is no analytic formula to compute their capacity.
In the general case we can only use numerical algorithms that converge to the
capacity, as we discuss in the end of this section. In practice, however, channels
have symmetry properties that can be exploited to compute the capacity in an
easy way. In this section we define classes of symmetry and discuss how to
compute the capacity for each class. Two classic cases are the symmetric and
weakly symmetric channels.

Definition 7.2.1. A matrix is symmetric if all rows are permutations of each
other and all columns are also permutations of each other. A matrix is weakly
symmetric if all rows are permutations of each other and the column sums are
equal.

The following result is from the literature:

Theorem 7.2.2 ([CT91], page 189). Let (A,O, pc) be a channel. If pc is weakly
symmetric then the channel’s capacity is given by a uniform input distribution
and is equal to

C = log |O| −H(r)

where r is a row of the matrix and H(r) is the entropy of r.

Note that symmetric channels are also weakly symmetric so Theorem 7.2.2
holds for both classes.

In anonymity protocols, users usually execute exactly the same protocol,
with the only difference being the names of the agents to whom they com-
municate. So if a user a1 produces an observable o1 with probability p, it is
reasonable to assume that a2 will produce some observable o2 with the same
probability. In other words we expect all rows of the protocol’s matrix to be
permutations of each other. On the other hand, the columns are not necessar-
ily permutations of each other, as we will see in the example of Section 7.5.
The problem is that o1 and o2 above need not be necessarily different, that
is we can have the same observable produced with equal probability by all
users. Clearly, these “constant” columns cannot be the permutation of non-
constant ones so the resulting channel matrix will not be symmetric (and not
even weakly symmetric).

To cope with this kind of channel we define a more relaxed kind of symmetry
called partial symmetry. In this class we allow some columns to be constant
and we require the sub-matrix, composed only of the non-constant columns, to
be symmetric. A weak version of this symmetry can also be defined.
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Definition 7.2.3. A matrix is partially symmetric (resp. weakly partially
symmetric) if some columns are constant (possibly with different values in each
column) and the rest of the matrix is symmetric (resp. weakly symmetric).

Now we can extend Theorem 7.2.2 to the case of partial symmetry.

Theorem 7.2.4. Let (A,O, pc) be a channel. If pc is weakly partially sym-
metric then the channel’s capacity is given by

C = ps log
|Os|
ps
−H(rs)

where Os is the set of symmetric output values, rs is the symmetric part of a
row of the matrix and ps is the sum of rs.

Proof. Let Os by the set of symmetric output values (the ones that correspond
to the symmetric columns) and On the set of the non-symmetric ones. Also let
r be a row of the matrix and rs the symmetric part of r. Since the matrix is
partially symmetric all rows are permutations of each other. As a consequence:

H(O|A) = −
∑
o

p(o)
∑
a

p(o|a) log p(o|a) = H(r)

Moreover the columns in On are constant so for all o ∈ On, p(o) is independent
of the input distribution: p(o) =

∑
a p(a)p(o|a) = p(o|a′) for some fixed a′. We

have

I(A;O) = H(O)−H(O|A)

= −
∑
o∈O

p(o) log p(o)−H(r)

= −
∑
o∈Os

p(o) log p(o)−
∑
o∈On

p(o|a′) log p(o|a′)−H(r)

= −
∑
o∈Os

p(o) log p(o)−H(rs)

≤ −
∑
o∈Os

ps
|Os| log

ps
|Os| −H(rs) (7.2)

= ps log
|Os|
ps
−H(rs) (7.3)

We constructed inequality (7.2) by taking a uniform distribution p(o) = ps

|Os| of
symmetric outputs (the non-symmetric outputs have constant probabilities).
ps is the total probability of having an output among those in Os. Now if
we take a uniform input distribution p(a) = 1

|A| then for all o ∈ Os : p(o) =∑
a p(a)p(o|a) = c

|A| where c is the sum of the corresponding column which
is the same for all symmetric output values. So a uniform input distribution
produces a uniform distribution of the symmetric output values, thus the bound
(7.3) is achieved and it is the actual capacity of the channel.

Note that Theorem 7.2.4 is a generalization of Theorem 7.2.2. A (weakly)
symmetric channel can be considered as (weakly) partially symmetric with no
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constant columns. In this case Os = O, rs = r, ps = 1 and we retrieve Theorem
7.2.2 from Theorem 7.2.4.

In all cases of symmetry discussed above, computing the capacity is a simple
operation involving only one row of the matrix and can be performed in O(|O|)
time.

In the general case of no symmetry we must use a numerical algorithm, like
the Arimoto-Blahut algorithm (see for instance [CT91]) which can compute the
capacity to any desired accuracy. However the convergence rate is slow (linear)
and the coefficient of the convergence speed gets smaller when the number of
input values increases.

7.3 Relation with existing anonymity notions

In this section we consider some particular channels, and we illustrate the
relation with probabilistic (non information-theoretic) notions of anonymity
existing in literature.

7.3.1 Capacity 0: strong anonymity

The case in which the capacity of the anonymity protocol is 0 is by definition
obtained when I(A;O) = 0 for all possible input distributions of A. From
information theory we know that this is the case iff A and O are independent
(cfr. [CT91], page 27). Hence we have the following characterization:

Proposition 7.3.1. Given an anonymity system (A,O, pc), the capacity of the
corresponding channel is 0 iff the system satisfies strong anonymity, that is if
all the rows of the channel matrix are the same.

Proof. The channel capacity is zero if and only if A and O are independent,
that is p(a, o) = p(a)p(o) ⇔ p(a) = p(a|o) for all o ∈ O, a ∈ A. The latter
condition is known as conditional anonymity (Def. 5.1.2) and by Theorem 5.1.3
it is equivalent to strong anonymity.

An example of a protocol with capacity 0 is the dining cryptographers in a
connected graph under the assumption of fair coins and considering only the
case where one of the cryptographers (and never the master) pays.

7.3.2 Conditional capacity 0: strong anonymity “within a
group”

In some anonymity protocols, the users are divided in groups and the protocol
allows the adversary to figure out to which group the culprit belongs, although
it tries to conceal which user in the group is the culprit. This is the case,
for example, of the dining cryptographers in a generic (non-connected) graph,
where the groups correspond to the connected components of the graph.

Such a situation corresponds to having a partition on A and O, see Sec-
tion 7.1.1. The case of conditional capacity 0 is obtained when each Mri has
capacity 0, namely when in each group ri the rows are identical.

Proposition 7.3.2. The dining cryptographers in a generic graph has condi-
tional capacity 0, under the assumption that the coins are fair.
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Proof. We consider the model of the protocol described in Section 5.2. Let G
be the graph of the protocol, consisting of l connected components G1, . . . , Gl.
The attacker is allowed to know which connected component the user belongs
to, so we define the set of revealed values as R = {1, . . . , l}. We first show
that R is a deterministic function of both A,O. Since a user can belong to
only one connected component we have p(r|a) = 1 if a ∈ Gr and 0 otherwise.
Concerning the observables, in the connected component of the payer the sum
of all announcements will have odd parity while in all other components the
parity will be even. So p(r|~o) = 1 iff

∑
ai∈Gr

oi = 1 and p(r|~o) = 0 otherwise.
So from Theorem 7.1.3 the matrix of the channel consists of smaller sub-

matrices, one for each connected component. In each component the protocol
is strongly anonymous (Theorem 5.2.1) so the corresponding sub-channel has
capacity 0. Since all sub-channels have capacity zero from Theorem 7.1.3 we
have C|R = 0 for the whole channel.

One of the authors of [SS00], David Sands, has suggested to us that the
notion of strong anonymity “within a group” seems related to the notion of
equivalence classes in his work. Exploring this connection is left for future
work.

7.3.3 Probable innocence: weaker bounds on capacity

Probable innocence is a weak notion of anonymity introduced by Reiter and
Rubin [RR98] for Crowds. Probable innocence was verbally defined as “from
the attacker’s point of view, the sender appears no more likely to be the origina-
tor of the message than to not be the originator”. As we discussed in Chapter
6, there are three different definitions that try to formally express this notion,
two from the literature and one described in Section 6.2. In this section we
discuss the relation between these definitions and the channel capacity.

Definition of Reiter and Rubin

In [RR98] Reiter and Rubin gave a verbal definition of probable innocence and
then formalized it and proved it for the Crowds protocol. Their formalization
considers the probability that the originator forwards a message directly to a
corrupted member (the attacker) and requires this probability to be at most
one half. As explained in Section 6.1.1, this definition could be expressed in the
framework of Chapter 4 as follows: an anonymity system (A,O, pc) satisfies
RR-probable innocence if

pc(o|a) ≤ 1
2
∀o ∈ O,∀a ∈ A

In Section 6.1.1 it is argued that this definition makes sense for Crowds due to
certain properties that Crowds satisfies, however it is not suitable for arbitrary
protocols.

We now show that RR-probable innocence imposes no bound on the capa-
city of the corresponding channel. Consider, for example, the protocol shown
in figure 7.3. The protocols satisfies RR-probable innocence since all values of
the matrix are less than or equal to one half. However the channel capacity is
(the matrix is symmetric) C = log |O| −H(r) = log(2n)− log 2 = log n which
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o1 o2 o3 o4 · · · o2n−1 o2n

a1 1/2 1/2 0 0 . . . 0 0

a1 0 0 1/2 1/2 . . . 0 0
...

...
. . .

...

an 0 0 0 0 . . . 1/2 1/2

Figure 7.3: A maximum-capacity channel which satisfies RR-probable inno-
cence

is the maximum possible capacity, equal to the entropy of A. Indeed, users
can be perfectly identified by the output since each observable is produced by
exactly one user.

Note, however, that in Crowds a bound on the capacity can be obtained due
to the special symmetries that it satisfies which make RR-probable innocence
equivalent to the new definition of probable innocence.

Definition of Halpern and O’Neill

In [HO05] Halpern and O’Neill give a definition of probable innocence that
focuses on the attacker’s confidence that a particular anonymous event hap-
pened, after performing an observation. It requires that the probability of an
anonymous event should be at most one half, under any observation. According
to the Definition 6.1.2, an anonymity instance satisfies HO-probable innocence
if

p(a|o) ≤ 1
2
∀o ∈ O,∀a ∈ A

This definition looks like the one of Reiter and Rubin but its meaning is very
different. It does not limit the probability of observing o. Instead, it limits the
probability of an anonymous event a given the observation of o.

As discussed in Section 6.1.2, the problem with this definition is that it
depends on the probabilities of the anonymous events which are not part of
the protocol. As a consequence, HO-probable innocence cannot hold for all
input distributions. If we consider a distribution where p(a) is very close to 1,
then p(a|o) cannot possibly be less than 1/2. So we cannot speak about the
bound that HO-probable innocence imposes to the capacity, since to compute
the capacity we quantify over all possible input distributions and HO-probable
innocence cannot hold for all of them. However, if we limit ourselves to the
input distributions where HO-probable innocence actually holds, then we can
prove the following proposition.

Proposition 7.3.3. Let (A,O, pc) be an anonymity system and pA a fixed
distribution over A. If the channel is symmetric and satisfies HO-probable
innocence for this input distribution then I(A;O) ≤ H(A)− 1.

Proof. If X is a random variable and f a function on X , we will denote by
Ef(X) the expected value of f(X). Note that H(X) = −E log p(X) and
H(X|Y ) = −E log p(X|Y ).
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We have

I(A;O) = H(A)−H(A|O) = H(A) + E log p(A|O)

And since p(A|O) ≤ 1/2 and both log and E are monotonic

I(A;O) ≤ H(A) + E log
1
2

= H(A)− 1

Note that we consider the mutual information for a specific input distribu-
tion, not the capacity, for the reasons explained above.

New definition of probable innocence

The new definition of probable innocence presented in the previous chapter
(Def. 6.2.2) tries to combine the other two by considering both the probability
of producing some observable and the attacker’s confidence after the observa-
tion. This definition considers the probability of two anonymous events a, a′

producing the same observable o and does not allow pc(o|a) to be too high or
too low compared to pc(o|a′). A protocol satisfies probable innocence if

(n− 1)pc(o|a′) ≥ pc(o|a) ∀o ∈ O,∀a, a′ ∈ A

where n = |A|. In Section 6.2 it is shown that this definition overcomes some
drawbacks of the other two definitions of probable innocence and it is argued
that it is more suitable for general protocols. In this section we show that the
new definition imposes a bound on the capacity of the corresponding channel,
which strengthens our belief that it is a good definition of anonymity.

Since the purpose of this definition is to limit the fraction p(o|a)
p(o|a′) we could

generalize it by requiring this fraction to be less than or equal to a constant γ.

Definition 7.3.4. An anonymity protocol (A,O, pc) satisfies partial anony-
mity if there is a constant γ such that

γ pc(o|a′) ≥ pc(o|a) ∀o ∈ O,∀a, a′ ∈ A

A similar notion is called weak probabilistic anonymity in [DPP06].
Note that partial anonymity generalizes both probable innocence (γ = n−1)

and strong anonymity (γ = 1). The following theorem shows that partial
anonymity imposes a bound to the channel capacity:

Theorem 7.3.5. Let S = (A,O, pc) be an anonymity system. If S satisfies
partial anonymity with γ > 1 and the matrix pc is symmetric then

C(S) ≤ log γ
γ − 1

− log
log γ
γ − 1

− log ln 2− 1
ln 2

Proof. Since the channel is symmetric, by Theorem 7.2.2 its capacity is given
by log |O| − H(r) where r is a row of the matrix. We consider the first row
which contains values of the form pc(o|a1), o ∈ O. Since the columns are
permutations of each other, we have ∀o∃a : pc(o|a1) = pc(o1|a). And since the
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protocol satisfies partial anonymity we have ∀a, a′ ∈ A : γ pc(o1|a′) ≥ pc(o1|a),
thus

γ pc(o′|a1) ≥ pc(o|a1) ∀o, o′ ∈ O (7.4)

First we show that when we decrease the distance between the probabil-
ities in a distribution then the entropy increases (this is a standard result
from information theory). Let ~x = (x1, x2, . . . , xn) such that x1 < x2 and let
~xo = (x1 + d, x2 − d, . . . , xn) with d ≤ x2 − x1. We can write ~xo as a convex
combination t~x+(1−t) ~xp where t = 1− d

x2−x1
and ~xp = (x2, x1, . . . , xn). Since

H(~x) = H( ~xp) and H(~x) is a concave function of ~x we have

H( ~xo) = H(t~x+ (1− t) ~xp) ≥ tH(~x) + (1− t)H( ~xp) = H(~x)

Let p be the minimum value of the row r. By (7.4) the maximum value of r
will be at most γp. To maximize the capacity we want to minimize H(r) so
we will construct the row which gives the minimum possible entropy without
violating (7.4). If there are any values of the row between p and γp we could
subtract some probability from one and add it to another value. Since this
operation increases the distance between the values, it decreases the entropy
of the row as we showed before (in the inverse direction). So for a fixed p the
lowest entropy is given by the row whose values are either p or γp. After that
we can no longer separate the values without violating (7.4). However, this is
a local optimum. If we take a new p′ and construct a new row with values p′

and γp′ then we might find an even lower entropy.
Let x be the number of elements with value γp. Also let m = |O|. We have

(m− x)p+ xγp = 1⇒ p =
1
A

with A = x(γ − 1) +m

And the entropy of r will be

H(r) = −(m− x)
1
A

log
1
A
− x γ

A
log

γ

A

= (−x(γ − 1)−m)
1
A

log
1
A
− x γ

A
log γ

= logA− x γ
A

log γ

So H(r) is a function h(x) of only one variable x. We want to find the value
x0 which minimizes h(x). First we differentiate h(x)

h′(x) =
1

ln 2
γ − 1
A
− γ log γ

m

A2

And x0 will be the value for which

h(x0) = 0⇒
1

ln 2
γ − 1

x0(γ − 1) +m
=

mγ log γ
(x0(γ − 1) +m)2

⇒

x0 =
A0 −m
γ − 1

with

A0 =
mγ log γ ln 2

γ − 1
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Finally the minimum entropy of r will be equal to

h(x0) = log
mγ log γ ln 2

γ − 1
− γ log γ

γ − 1
+

1
ln 2

= logm− log γ
γ − 1

+ log log γ − log(γ − 1) + log ln 2 +
1

ln 2

And the maximum capacity will be

Cmax = logm− h(x0)

=
log γ
γ − 1

− log
log γ
γ − 1

− log ln 2− 1
ln 2

This bound has two interesting properties. First, it depends only on γ
and not on the number of input or output values or on other properties of the
channel matrix. Second, the bound converges to 0 as γ → 1. As a consequence,
due to the continuity of the capacity as a function of the channel matrix, we
can retrieve Proposition 7.3.1 about strong anonymity (γ = 1) from Theorem
7.3.5. A bound for probable innocence can be obtained by taking γ = n−1, so
Theorem 7.3.5 treats strong anonymity and probable innocence in a uniform
way. Note that this bound is proved for the special case of symmetric channels,
we plan to examine the general case in the future.

7.4 Adding edges to a dining cryptographers network

We turn our attention again to the dining cryptographers protocol where we use
the new definition of anonymity to compare different cryptographer networks.
Consider a dining cryptographers instance with an arbitrary network graph
Gc and possibly biased coins. The anonymity guarantees of the protocol come
from the fact that the unknown values of the coins add noise to the output of
the cryptographers. Now imagine that we add a new edge to the graph, that is
a new coin shared between two cryptographers, obtaining a new graph G′c. If
the new coin is fair then intuitively we would expect the new graph to have at
least the same anonymity guarantees as the old one, if not better. If the new
coin is biased the intuition is not so clear, but it is still true that we add more
noise to the system so we could expect the same behavior. In this section we
explore this idea and prove various results about the anonymity of the resulting
system.

This section is somewhat transversal in the sense that some of its results
are about topics which belong to the scope of other chapters, but we decided
to keep them together because they are strictly interconnected. Let us ex-
plain how they are articulated. The main result of this section is Theorem
7.4.3, which states that the capacity of the system decreases monotonically
with the insertion of a new edge. In order to prove the main result, we start
by showing that the conditional probabilities of the new instance are convex
combinations of conditional probabilities of the old one, where the coefficients
are the probabilities of the added coin (Proposition 7.4.1). As a side result of
this proposition, we prove that if the old system satisfies probable innocence,
then also the new system does (Corollary 7.4.2). As a consequence of the main
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theorem, we are able to strengthen Chaum’s result, namely we prove that in
order for a component to be strongly anonymous it is sufficient to have a span-
ning tree consisting of fair coins (Corollary 7.4.4). Finally, we prove that this
condition is also necessary (Theorem 7.4.5).

It is important to note that when we add an edge to the graph, the number of
observables remains the same, but the conditional probabilities pc(~o|a) change.
The following proposition states how the new probabilities can be expressed in
terms of the old ones.

Proposition 7.4.1. Let Gc be a connected component of a dining cryptogra-
phers graph and S(Gc) = (A,O, pc) the corresponding anonymity system. Let
G′c be the graph produced by adding an edge (coin) to Gc and let h, t be the
probability of heads/tails of the added coin. Then S(G′c) = (A,O, p′c) where

p′c(~o|a) = h pc(~o|a) + t pc(~o⊕ ~w|a) ∀~o ∈ O, a ∈ A

where ~w is a fixed vector of even parity (depending only on G′c).

Proof. Let n,m be the number of vertices and edges of Gc. Also let B,B′ be the
incidence matrices of Gc, G′c respectively. B′ is be the same as B with an extra
column corresponding to the added edge. We fix an ~o ∈ O and a ∈ A. The coin
configurations that produce ~o in the output of G′c will be the solutions of the
system of equations B′~x = ~o⊕ ~r where ~r is the inversion vector corresponding
to the cryptographer a. As already discussed in the proof of Theorem 5.2.1,
B′ has rank n− 1 and the system is solvable with 2n−m solutions.

Let C ⊆ GF(2)m+1 be the set of its solutions. We split C in two subsets
C0, C1 based on the (m + 1)-th coin (the added one) where its value in all
elements of C0, C1 is 0, 1 respectively. Let pi(0), pi(1) be the probabilities of the
i-th coin giving heads, tails respectively, thus h = pm+1(0), t = pm+1(1). The
probability p′(~o|a) is

p′c(~o|a) =
∑
~c∈C

m+1∏
i=1

pi(ci)

=
∑
~c∈C0

m+1∏
i=1

pi(ci) +
∑
~c∈C1

m+1∏
i=1

pi(ci)

= h
( ∑
~c∈C0

m∏
i=1

pi(ci)
)

+ t
( ∑
~c∈C1

m∏
i=1

pi(ci)
)

(7.5)

If ~x is a vector in a n-dimensional space we will denote by ~y = (~x, v) the
vector in a (n+1)-dimensional space such that yi = xi, 1 ≤ i ≤ n and yn+1 = v.
Consider a vector (~c, 0) ∈ C0. Since its last element is 0 then B~c = B′(~c, 0). So
~c is a solution to the system B~x = ~o⊕ ~r, that is ~c is a coin configuration that
produces ~o in the output of Gc (intuitively, this means that adding a zero coin
to a configuration does not change the output). So

pc(~o|a) =
∑
~c∈C0

m∏
i=1

pi(ci) (7.6)
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The most interesting case however are the vectors (~c, 1) ∈ C1 since now ~c is not
a solution to B~x = ~o⊕~r. We write (~c, 1) as (~c, 0)⊕ ~I where ~I is a vector having
1 as its (m+ 1)-th element and 0 everywhere else. Then we have

B′(~c, 1) = ~o⊕ ~r ⇔
B′((~c, 0)⊕ ~I) = ~o⊕ ~r ⇔

B′(~c, 0) = ~o⊕B′~I ⊕ r

so (~c, 0) is a solution to B′~x = ~o ⊕ ~w ⊕ r, where ~w = B′~I, and as discussed
above, ~c is a solution to B~x = ~o⊕ ~w⊕ r. Note that ~w has even parity, so ~o⊕ ~w
has even parity so it is itself an observable. Thus

pc(~o⊕ ~w|a) =
∑
~c∈C1

m∏
i=1

pi(ci) (7.7)

Also note that ~w is a fixed vector, it does not depend either on ~o or on a. In
fact, ~w is a vector containing 1 in the positions of the cryptographers joined by
the added edge and 0 everywhere else. Finally, (7.5) using (7.6),(7.7) becomes

p′c(~o|a) = h pc(~o|a) + t pc(~o⊕ ~w|a)

Previous proposition allows us to show, as a side results, that adding an
edge to a dining cryptographers graph preserves probable innocence.

Corollary 7.4.2. Let Gc be a connected component of a dining cryptographers
graph and G′c the graph produced by adding an edge. Also let S(Gc) = (A,O, pc)
and S(G′c) = (A,O, p′c) be the corresponding anonymity systems. If S(Gc)
satisfies probable innocence then S(G′c) also satisfies it.

Proof. Since S(Gc) satisfies probable innocence then (n − 1)p(~o|a) ≥ p(~o|a′)
for all ~o ∈ O, a, a′ ∈ A. For S(G′c) we have

(n− 1)p′c(~o|a) = (n− 1)h pc(~o|a) + (n− 1)t pc(~o⊕ ~w|a) Prop. 7.4.1
≥ h pc(~o|a′) + t pc(~o⊕ ~w|a′) Probable Inn.
= p′c(~o|a′) Prop. 7.4.1

The above result conforms to our intuition that we cannot make the protocol
less anonymous by adding new coins. However, by saying that both systems
satisfy probable innocence we don’t actually compare them. Either of the
two could be “worse” that the other, while still satisfying the property. The
inability to compare protocols of the same family was one of the reasons that
led us to a quantitative definition of anonymity. Using the new definition we
can show that the degree of anonymity of the protocol after the addition of the
edge is at least as good and that of the original protocol.

To show this result we use the fact that capacity is a convex function of the
channel’s matrix, that is C(t1M1 + t2M2) ≤ t1 C(M1) + t2 C(M2) where t1, t2
are positive coefficients such that t1 + t2 = 1 and M1,M2 are matrices of the
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same size. This is an important property of capacity that leads to many useful
results. We will give a proof of it in the next chapter (Theorem 8.1.3) since it
fits better there, for the moment we take it for granted.

Theorem 7.4.3. Let Gc be a connected component of a dining cryptographers
graph and G′c the graph produced by adding an edge. Also let S(Gc) = (A,O, pc)
and S(G′c) = (A,O, p′c) be the corresponding anonymity systems. Then

C(G′c) ≤ C(Gc)

Proof. From Proposition 7.4.1 we have p′c(~o|a) = h pc(~o|a) + t pc(~o ⊕ ~w|a) for
a fixed vector ~w. Let M be the channel matrix of S(Gc)3, we create a matrix
Mp by permuting the columns of M so that the column ~o⊕ ~w is placed at the
position of ~o. Since we only permuted the columns, C(M) = C(Mp). Now we
can write the matrix M ′ of S(G′c) as a convex combination of M and Mp

M ′ = hM + tMp

and finally, because of the convexity of capacity as a function of the matrix,
we get

C(M ′) = C(hM + tMp)
≥ hC(M) + t C(Mp) by convexity
= hC(M) + t C(M) C(M) = C(Mp)
= C(M)

As a consequence of the above theorem we are able to prove an interesting
and somehow counter-intuitive result about strong anonymity. Chaum’s proof
(Theorem 5.2.1) says that dining cryptographers on an arbitrary connected
graph Gc is strongly anonymous if all the coins are fair. However, it states
this condition as sufficient, not necessary for strong anonymity. Indeed, not
all coins need to be fair. We show that having a spanning tree of fair coins is
enough, even if the rest of the coins are biased.

Corollary 7.4.4. A dining cryptographers instance is strongly anonymous with
respect to a connected component Gc if Gc has a spanning tree consisting only
of fair coins.

Proof. Let Gt be the spanning tree of Cc. Since Gt is connected and all coins
are fair then S(Gt) is strongly anonymous so C(S(Gt)) = 0. We can reconstruct
Gc from Gt by adding the remaining edges, so by Theorem 7.4.3 C(S(Gc)) ≤
C(S(Gt)) = 0. Hence Gc is strongly anonymous.

Finally we show that the above is also a necessary condition, namely a din-
ing cryptographers instance is strongly anonymous with respect to a connected
component if and only if the component has a spanning tree consisting of only
fair coins.

In order to understand this result, let us remind the reader that we assume
that the matrix of the protocol is known to the adversary. This implies that
(in general) the adversary knows whether a coin is biased, and how it is biased.

3Note that M is not the incidence matrix of Gc but the matrix of conditional probabilities
of the channel.
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Theorem 7.4.5. A dining cryptographers instance is strongly anonymous with
respect to a connected component Gc only if Gc has a spanning tree consisting
only of fair coins.

Proof. By contradiction. Let n be the number of vertices in Gc. Assume that
Gc is strongly anonymous without having a spanning tree consisting only of fair
coins. Then it is possible to split Gc in two non-empty subgraphs, G1 and G2,
such that all the edges between G1 and G2 are unfair. Let ~c = (c1, c2, . . . , cm)
be the vector of coins corresponding to these edges. Since Gc is connected, we
have that m ≥ 1.

Let a1 be a vertex in G1 and a2 be a vertex in G2. By strong anonymity,
for every observable ~o we have

p(~o | a1) = p(~o | a2) (7.8)

Observe now that p(~o | a1) = p(~o ⊕ ~w | a2) where ~w is a vector in GF(2)n

containing 1 exactly twice, in correspondence of a1 and a2. Hence (7.8) becomes

p(~o⊕ ~w | a2) = p(~o | a2) (7.9)

Let d be the binary sum of all the elements of ~o in G1, and d′ be the binary
sum of all the elements of ~o⊕ ~w in G1. Since in G1 ~w contains 1 exactly once,
we have d′ = d⊕ 1. Hence (7.9), being valid for all ~o’s, implies

p(d⊕ 1 | a2) = p(d | a2) (7.10)

Because of the way o, and hence d, are calculated, and since the contribution
of the edges internal to G1 is 0, and a2 (the payer) is not in G1, we have that

d =
m∑
i=1

ci

from which, together with (7.10), and the fact that the coins are independent
from the choice of the payer, we derive

p(
m∑
i=1

ci = 0) = p(
m∑
i=1

ci = 1) = 1/2 (7.11)

The last step is to prove that p(
∑m
i=1 ci = 0) = 1/2 implies that one of

the ci’s is fair, which will give us a contradiction. We prove this by induction
on m. The property obviously holds for m = 1. Let us now assume that we
have proved it for the vector (c1, c2, . . . , cm−1). Observe that p(

∑m
i=1 ci = 0) =

p(
∑m−1
i=1 ci = 0)p(cm = 0) + p(

∑m−1
i=1 ci = 1)p(cm = 1). From (7.11) we derive

p(
m−1∑
i=1

ci = 0)p(cm = 0) + p(
m−1∑
i=1

ci = 1)p(cm = 1) = 1/2 (7.12)

Now, it is easy to see that (7.12) has only two solutions: one in which p(cm =
0) = 1/2, and one in which p(

∑m−1
i=1 ci = 1) = 1/2. In the first case we are

done, in the second case we apply the induction hypothesis.
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7.5 Computing the degree of anonymity of a protocol

In this section we discuss how to compute the channel matrix and the degree of
anonymity for a given protocol, possibly using automated tools. We illustrate
our ideas on the dining cryptographers protocol, where we measure the de-
gree of anonymity when modifying the probability of the coins, and on crowds
where we measure the degree of anonymity as a function of the probability of
forwarding a message.

7.5.1 Dining cryptographers

To measure the degree of anonymity of a system, we start by identifying the
set of anonymous events, which depend on what the system is trying to hide.
In the dining cryptographers, we take A = {c1, c2, c3,m} where ci means that
cryptographer i is paying and m that the master is paying. Then the set
of observable events should also be defined, based on the visible actions of
the protocol and on the various assumptions made about the attacker. In
the dining cryptographers, we consider for simplicity the case where all the
cryptographers are honest and the attacker is an external observer (the case
of corrupted cryptographers can be treated similarly). Since the coins are
only visible to the cryptographers, the only observables of the protocol are the
announcements of agree/disagree. So the set of observable events will contain
all possible combinations of announcements, that is O = {aaa, aad, . . . , ddd}
where a means agree and d means disagree.

If some information about the anonymous events is revealed intentionally
then we should consider using relative anonymity (see Section 7.1.1). In the
dining cryptographers, the information about whether the payer is a cryptog-
rapher or not is revealed by design (this is the purpose of the protocol). If,
for example, the attacker observes aaa then he concludes that the anonymous
event that happened is m since the number of disagree is even. To model this
fact we use the conditional capacity and we take R = {m, c} where m means
that the master is paying and c that one of the cryptographers is paying.

After defining A,O,R we should model the protocol in some formal prob-
abilistic language. In our example, we modeled the dining cryptographers in
the language of the PRISM model-checker, which is essentially a formalism to
describe Markov Decision Processes. Then the channel matrix of conditional
probabilities pc(o|a) must be computed, either by hand or using an automated
tool like PRISM. In the case of relative anonymity, the probabilities pc(o|a)
and pR(r|a, o) are needed for all a, o, r. However, in our example, R is a de-
terministic function of both A and O, so by Theorem 7.1.3 we can compute
the conditional capacity as the maximum capacity of the sub-channels for each
value of R individually. For R = m the sub-channel has only one input value,
hence its capacity is 0. Therefore the only interesting case is when R = c. In our
experiments, we use PRISM to compute the channel matrix, while varying the
probability p of each coin yielding heads. PRISM can compute the probability
of reaching a specific state starting from a given one. Thus, each conditional
probability pc(o|a) is computed as the probability of reaching a state where the
cryptographers have announced o, starting from the state where a is chosen.
In Fig. 7.4 the channel matrix is displayed for p = 0.5 and p = 0.7.

Finally, from the matrix, the capacity can be computed in two different

84



Computing the degree of anonymity of a protocol

daa ada aad ddd aaa dda dad add

c1 0.25 0.25 0.25 0.25 0 0 0 0

c2 0.25 0.25 0.25 0.25 0 0 0 0

c3 0.25 0.25 0.25 0.25 0 0 0 0

m 0 0 0 0 0.25 0.25 0.25 0.25

daa ada aad ddd aaa dda dad add

c1 0.37 0.21 0.21 0.21 0 0 0 0

c2 0.21 0.37 0.21 0.21 0 0 0 0

c3 0.21 0.21 0.37 0.21 0 0 0 0

m 0 0 0 0 0.37 0.21 0.21 0.21

Figure 7.4: The channel matrices for probability of heads p = 0.5 (left) and
p = 0.7 (right)
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Figure 7.5: The degree of anonymity in the Dining Cryptographers as a function
of the coins’ probability to yield heads.

ways. Either by using the general Arimoto-Blahut algorithm, or by using
Theorem 7.2.4 which can be applied because the matrix is partially symmetric.
The resulting graph is displayed in Fig. 7.5. As expected, when p = 0.5 the
protocol is strongly anonymous and the relative loss of anonymity is 0. When
p approaches 0 or 1, the attacker can deduce the identity of the payer with
increasingly high probability, so the capacity increases. In the extreme case
where the coins are totally biased the attacker can be sure about the payer,
and the capacity takes its maximum value of log 3.

In this example, we see how the various results of this chapter fit together
when we analyze an anonymity protocol. We model the protocol by considering
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the anonymous events A, the observable events O, the revealed information
R and the matrices pc(o|a), pR(r|a, o). In this framework, the relative loss of
anonymity (Definition 7.1.2) gives an intuitive measure of the anonymity degree
of the protocol. Theorem 7.1.3 greatly reduces the size of the problem since we
need to consider only the submatrices of pc(o|a). Partial symmetry simplifies
our work even more, we only need to compute one row for each sub-matrix
and the computation of the capacity is a very simple operation on this row.
Finally, the actual computation of the conditional probabilities that we need
can be fully automated using a model-checking tool like PRISM.

7.5.2 Crowds

In this section we do a similar analysis of Crowds and show how to compute
its degree of anonymity. Consider a Crowds instance of m users of which n
are honest and c = m − n are corrupted. Since anonymity makes sense only
for honest users we define A = {a1, . . . , an} where ai means that user i is the
initiator of the message. The set of observables O depends on the attacker
model, we could measure sender anonymity wrt the end server or wrt the
corrupted users of the protocol, here we only consider the latter which is more
interesting. The only thing that a corrupted user can observe is a request to
forward a message, coming from another user of the protocol. Moreover, as is
usually the case in the analysis of Crowds ([Shm02, WALS02]), we assume that
a corrupted user will never forward a message sent to him since by doing so
he cannot learn more information about the actual initiator. Thus, there is at
most one observed user (the one who sent the message to the corrupted user)
and it is always an honest one. So we define O = {o1, . . . , on} where oi means
that the user i forwarded a message to a corrupted user.

The channel matrix pc(o|a) can be computed either analytically or by means
of a model-checking tool like PRISM. The advantage of the second approach
is that with minimal changes we could compute the matrix for any network
topology, not only for the usual clique network, which is much more difficult to
do analytically. In fact, in Chapter 9 we use PRISM to compute the matrix of
Crowds in a grid network. Since PRISM can only check finite-state models, we
need to model Crowds as a finite-state system, even though its executions are
infinite. We use a model similar to the one in [Shm02] where a state is defined
by the user who currently possesses the message, independently form the path
that the message followed to arrive there, so the number of states is finite.
In order for pc(·|a) to be a distribution over A, we normalize all elements by
dividing with the total probability of observing any user. This corresponds to
computing all probabilities conditioned on the event that some user has been
observed, which is reasonable since if no user is observed at all then anonymity
is not an issue.

From the matrix we can compute the capacity, for the case of a clique
network, using Theorem 7.2.2 since the matrix is symmetric. As a consequence
we only need one row of the matrix, so we can only compute a single one to
speed up model-checking. For non-clique networks we can still compute the
capacity using the Arimoto-Blahut algorithm.

The resulting graph is displayed in Fig. 7.5.2. We have plotted the capa-
city of three Crowds instances while varying the probability pf of forwarding
a message in the protocol. All instances have 50 honest users while the num-
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Figure 7.6: The degree of anonymity for Crowds as a function of the probability
pf of forwarding a message. Three instances are displayed, with 50 honest users
and 10, 20 and 30 corrupted ones. The expected path length is also displayed
as a function of pf .

ber of corrupted ones is 10, 20 and 30 respectively. Firstly, we see that the
whole graph of the capacity is smaller when the number of corrupted users is
smaller, which is expected since more corrupted users means higher probability
of getting detected in the first round. When pf = 0 then all instances have
maximum capacity log2 50, meaning no anonymity at all, since, if forwarding
never happens then the detected user is always the initiator.

For each instance we also indicate the minimum value of pf required to
satisfy probable innocence, given by the equation m = pf

pf− 1
2

(c+1). This value
is different for each instance (since m, c are different) however at this value all
instances have the same capacity C = H(pu)−H(p1/2) ≈ 1.8365 where pu is a
uniform distribution over A and p1/2 is a distribution that assigns probability
1/2 to one user, and uniform to all the others.

Finally, the expected length of the path to the server, equal to 1
1−pf

(as
shown in [RR98]) is displayed. As we can see from the graph there is a trade-off
between performance (expected path length) and anonymity (capacity) when
selecting a value for pf . Given the maximum number of corrupted users that
we want to consider, we can use the graph to find a value for pf that offers
acceptable capacity with a reasonable expected path length. The quantitative
aspect of the capacity is important in this case, since it provides more detail
about the connection between the degree of anonymity and pf , even in areas
where probable innocence is always satisfied or violated.
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7.6 Related work

A recent line of work has been dedicated to exploring the notion of anony-
mity from an information-theoretic point of view [SD02, DSCP02]. The main
difference with our approach is that in those works the anonymity degree is
expressed in terms of entropy, rather than mutual information. More precisely,
the emphasis is on the lack of information that an attacker has about the dis-
tribution of the users, rather than on the capability of the protocol to conceal
this information despite the observables that are made available to the attacker.
Moreover, a uniform user distribution is assumed, while in our definition we
try to abstract from the user distribution and make no assumptions about it.

Channel capacity has been already used in an anonymity context in [MNCM03,
MNS03], where the ability to have covert communication as a result of non-
perfect anonymity is examined. The difference with our approach is that in
those works the channels are constructed by the users of the protocol using the
protocol mechanisms, to transfer information, and capacity is used to measure
the amount of information that can be transferred through these channels. In
our work, we consider the channel to be an abstraction of the protocol itself,
and we use the capacity to measure the anonymity degree of the protocol.
However in [MNS03] the authors also suggest that the channel’s capacity can
be used as an asymptotic measure of the worst-case loss of anonymity, which
is the idea that we explore in this chapter. Note that in [MNS03] the authors
warn that in certain cases the notion of capacity might be too strong a measure
to compare systems with, because the holes in the anonymity of a system might
not behave like text book discrete memoryless channels.

Zhu and Bettati proposed in [ZB05] a definition of anonymity based on
mutual information. The notion we consider is based on capacity, which is an
abstraction of mutual information obtained by maximizing over the possible
input distributions. As a consequence, we get a measure that depends only on
the protocol (i.e. the channel) and not on the users (i.e. the input distribution),
which is an advantage because in general we don’t know the input distribution,
and it also depends on the users, and even with the same users, it may change
over time. Of course, in case we know a priori the input distribution, then the
definition of Zhu and Bettati is more precise because it gives the exact loss of
anonymity for the specific situation.

Another approach close in spirit to ours is the one of [DPW06]. In this work,
the authors use the notion of relative entropy to perform a metric analysis of
anonymity. In our work, we use the notion of mutual information, which is a
special case of relative entropy. However, the specific application of relative
entropy in [DPW06] is radically different from ours. We use it to compare the
entropy of the input of an anonymity protocol before and after the observation.
They use it to establish a sort of distance between the traces of an anonymity
system.

In the field of information flow and non-interference there is a line of
research which is closely related to ours. There have been various works
[McL90, Gra91, CHM01, CHM05, Low02] in which the high information and
the low information are seen as the input and output respectively of a channel.
From an abstract point of view, the setting is very similar; technically it does
not matter what kind of information we are trying to conceal, what is relevant
for the analysis is only the probabilistic relation between the input and the
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output information. We believe that part of our framework and of our results
are applicable more or less directly also to the field of non-interference. Some
of the results however, for instance those based on the hypotheses of symmetry
or weak symmetry of the protocol’s matrix, seem to be specific to the anony-
mity setting, in the sense that the assumptions would be too restrictive for the
non-interference case.
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Eight

A monotonicity principle and its
implications for binary channels

In the previous chapter we saw that we can view anonymity systems as noisy
channels in the information theoretic sense, and measure the loss of anonymity
of a protocol as the capacity of the corresponding channel. As a consequence,
the study of channels can provide us with new insight and results about ano-
nymity protocols. In particular we would like to compare channels and define
orders with respect to which the capacity is monotone. This would allow us
to compare different instances of protocols or a protocol and its specification.
Moreover, since capacity is usually difficult to compute and reason about, we
would like to have bounds based on easily computable functions.

In this chapter we establish a monotonicity principle for convex functions:
a convex function decreases on a line segment iff it assumes its minimum value
at the end of that line segment. Though quite simple, this single idea has
an unusual number of important consequences for information theory, since
the capacity has the important property of being convex as a function of the
channel matrix. We have already seen a use of this property in Section 7.4, in
this chapter we use it extensively, together with the monotonicity principle, to
obtain a number of general results.

In the rest of the chapter we show various implications of the monotonicity
principle for binary channels. The first of these is that it offers a significant
extension of algebraic information theory [MMA06]: a new partial order is in-
troduced on binary channels with respect to which capacity is monotone. This
new order is much larger than the interval order considered in [MMA06], and
can be characterized in at least three different ways, each of which has its own
value: by means of a simple formula, which makes it easy to apply in prac-
tice; geometrically, which makes it easy to understand and reason about; and
algebraically, which establishes its canonical nature, mathematically speaking.

Another use of the monotonicity principle is in establishing inequalities
relating different measurements on the domain of channels. These inequalities
can be used to provide bounds for the capacity of a channel in cases where only
partial information is known about the channel, or where the channel matrix
depends on run-time parameters of the protocol. These results also provide
graphical methods for reasoning about the capacity of channels. There is a

91



8. A monotonicity principle

“geometry of binary channels”, in which, roughly speaking, a line of channels
either hits the diagonal, or is parallel to it. We determine the behavior of
capacity in both these cases, which allows one to answer most (but not all)
questions when it comes to comparing channel behavior.

The results in this chapter are from joint work with Keye Martin and will
appear in the forthcoming paper ([CM07]) which contains additional results
such as an explanation of the relation between capacity and Euclidean distance
and the solution of an open problem in quantum steganography.

8.1 The monotonicity principle

The monotonicity principle introduced in this section is based on the property
of convexity (see Section 2.3 for a brief discussion on convexity). A function
f : S → R defined on a convex set S is convex iff

tf(x1) + tf(x2) ≥ f(tx1 + tx2) ∀x1, x2 ∈ S, ∀t ∈ [0, 1]

where t = 1−t. A function f is strictly convex if tf(x1)+tf(x2) = f(tx1 +tx2)
for x1 6= x2 implies t = 0 or t = 1.

We now come to the monotonicity principle: a convex function decreases
along a line segment iff it assumes its minimum value at the end of that line
segment.

Theorem 8.1.1. If S is a set of vectors, x, y ∈ S, π(t) = ty + t̄x is the line
from x to y and c : S → R is a function (strictly) convex on π[0, 1], then the
following are equivalent:

(i) The function c ◦ π : [0, 1]→ R is (strictly) monotone decreasing,

(ii) The minimum value of c ◦ π on [0, 1] is c(π(1)) = c(y).

Proof. (ii) ⇒ (i). The function f : [0, 1] → R :: f(t) = c(π(t)) is convex, since
c is convex on π[0, 1] and π satisfies π(px + p̄y) = pπ(x) + p̄π(y), p ∈ [0, 1].
Let 0 ≤ s < t ≤ 1. We prove f(s) ≥ f(t). Since t is between s and 1, we have
t = p · s+ p̄ · 1, where p = t̄/s̄ ∈ [0, 1). Then

f(t) ≤ pf(s) + p̄f(1) (convexity of f) (8.1)
≤ pf(s) + p̄f(s) (f(1) ≤ f(s)) (8.2)
= f(s)

Then suppose that c is strictly convex on π[0, 1], so f is also strictly convex
on [0, 1]. We want to show that f is strictly monotone decreasing, that is
f(s) > f(t) (since s < t). Assuming f(s) = f(t) then we have equality in (8.1)
and from strict convexity this implies p = 0 (since p < 1). Then the equality
in (8.2) implies f(s) = f(1). Then we take any point r ∈ (s, 1) which can be
written as r = q · s+ q̄ · 1, q = r̄/s̄ ∈ (0, 1) and by strict convexity we have:

f(r) < qf(s) + q̄f(1) = f(1)

which is a contradiction since f(1) is the minimum of f .
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It is by no means obvious that the monotonicity principle is of any value in
problem solving. However, as we will see shortly, there are many situations in
information theory where it is far easier to establish a minimum value along a
line than it is to establish monotonicity itself. Then the monotonicity principle
can be applied since many of the functions involved in information theory turn
out to be convex.

Let (A,O,m) be a discrete channel and p a distribution over A. We denote
by Ip(m) the mutual information between the input and the output of the
channel, for the given p. The next result appears as Theorem 2.7.4 in the book
by Cover and Thomas ([CT91]):

Theorem 8.1.2. The mutual information Ip(m) is a convex function of m
for a fixed p.

An important consequence of the last result, first observed by Shannon
in [Sha93], though not particularly well-known, is that capacity itself is convex:

Theorem 8.1.3. The capacity c(m) is a convex function of m.

Proof. Let p1, p2, p be the capacity achieving distributions of the channels
m1,m2 and tm1 + tm2 respectively. We have

tc(m1) + tc(m2) = tIp1(m1) + tIp2(m2) definition of c(m)

≥ tIp(m1) + tIp(m2) pi gives the best Ipi(mi)

≥ Ip(tm1 + tm2) Theorem 8.1.2

= c(tm1 + tm2) definition of c(m)

Because Theorem 8.1.1 can be applied to any line that ends on a minimum
capacity channel, it provides a powerful technique for comparing the capacity
of channels. One immediate application of it is that we can solve the capa-
city reduction problem for arbitrary m× n channels. In the capacity reduction
problem, we have an m × n channel x1 and would like to systematically ob-
tain a channel whose capacity is smaller by some pre-specified amount. The
monotonicity principle offers a solution:

Proposition 8.1.4. Let x be any m×n channel, y be any m×n channel with
zero capacity and π denote the line from x to y. Then c(π[0, 1]) = [0, c(x)] and
the function c ◦ π is monotone decreasing.

Proof. By the continuity of capacity [Mar07], c(π[0, 1]) is an interval that con-
tains 0 and c(x), which means [0, c(x)] ⊆ c(π[0, 1]). Since c(y) = 0 = min c ◦ π,
Theorem 8.1.1 implies that c ◦ π is decreasing, so c(π[0, 1]) ⊆ [0, c(x)].

Thus, given any 0 < r < c(x), we need only solve the equation c(π(t)) = r
for t. This equation can be solved numerically since c ◦ π − r changes sign
on [0, 1]. Notice that this enables us to systematically solve a problem that
otherwise would have m(n−1) unknowns but only a single equation. Moreover,

1We will represent discrete channels by their probability matrices, here x is a m × n
matrix.
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the channel obtained is a linear degradation of the original. Similarly, we
can systematically increase the capacity using the line from x to a maximum
capacity channel.

In the rest of this chapter we will see many more implications of the mono-
tonicity property for the family of binary channels.

8.2 Binary channels

A binary channel is a discrete channel with two inputs (“0” and “1”) and two
outputs (“0” and “1”). An input is sent through the channel to a receiver.
Because of noise in the channel, what arrives may not necessarily be what the
sender intended. The effect of noise on input data is modeled by a noise matrix
u. If data is sent through the channel according to the distribution x, then the
output is distributed as y = x · u. The noise matrix u is given by

u =

(
a ā

b b̄

)

where a = P (0|0) is the probability of receiving 0 when 0 is sent and b = P (0|1)
is the probability of receiving 0 when 1 is sent.

Thus, the noise matrix of a binary channel can be represented by a point
(a, b) in the unit square [0, 1]2 and all points in the unit square represent the
noise matrix of some binary channel.

Definition 8.2.1. The set of binary channels is [0, 1]2.

The composition of two binary channels x and y is the channel whose noise
matrix is the usual product of matrices x · y = xy. The multiplication of two
noise matrices x = (a, b) and y = (c, d) in the unit square representation is

(a, b) · (c, d) = ( a(c− d) + d, b(c− d) + d ) = c(a, b) + d(ā, b̄)

where the expression to the right uses scalar multiplication and addition of
vectors. By contrast, the representation for a convex sum of noise matrices is
simply the convex sum of each representing vector.

A monoid is a set with an associative binary operation that has an identity.
The set of binary channels is a monoid under the operation of multiplication
whose identity is the noiseless channel 1 := (1, 0). A binary channel can be
classified according to the sign of its determinant, det(a, b) = a − b, which
defines a homomorphism det : ([0, 1]2, ·)→ ([−1, 1], ·) between monoids.

Definition 8.2.2. A binary channel x is called positive when det(x) > 0,
negative when det(x) < 0 and a zero channel when det(x) = 0. A channel is
non-negative if it is either positive or zero.

Also, a channel (a, b) is called a Z-channel if a ∈ {0, 1} or b ∈ {0, 1}.
Notice that det(x) ∈ (0, 1] for positive channels, and that det(x) ∈ [−1, 0)

for negative channels. Thus, the set of positive channels is a submonoid of [0, 1]2

as is the set of non-negative channels; the determinant is a homomorphism from
the non-negative channels into ([0, 1], ·).
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Figure 8.1: The capacity (lower graph) and the determinant (upper graph) for
binary channels.

Definition 8.2.3. The set of non-negative binary channels is denoted N. The
set of positive binary channels is denoted P.

A nice property of positive binary channels is that composition can be
inverted (even though the “inverse” of a channel is not a channel).

Lemma 8.2.4. For a ∈ P, x, y ∈ N we have ax = ay iff x = y iff xa = ya.

Proof. Seeing a, x, y as matrices, det(a) > 0 so a can be inverted (note that
a−1 is not a channel) so ax = ay ⇔ a−1ax = a−1ay ⇔ x = y. Similarly for
xa = ya.

The amount of information that may be sent through a channel (a, b) is
given by its capacity

c(a, b) = sup
x∈[0,1]

H((a− b)x+ b)− xH(a)− (1− x)H(b)

This defines a continuous function on the unit square [Mar07], given by

c(a, b) = log2

(
2

āH(b)−b̄H(a)
a−b + 2

bH(a)−aH(b)
a−b

)
where c(a, a) := 0 and H(x) = −x log2(x)− (1− x) log2(1− x) is the base two
entropy. A graph of the capacity and the determinant for binary channels is
displayed in Figure 8.1.

Another interesting property of binary channels is that the capacity is
strictly convex everywhere, except on the zero channels. To show this we
will adjust the proof of convexity from [CT91], focusing on equality conditions.
We start by the log sum inequality.
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8. A monotonicity principle

Theorem 8.2.5 (Log sum inequality). For non-negative numbers a1, . . . , an
and b1, . . . , bn

n∑
i=1

ai log
ai
bi
≥ ( n∑

i=1

ai
)

log
∑n
i=1 ai∑n
i=1 bi

with equality if and only if ai

bi
is constant.

We refer to [CT91] for the proof. We use the conventions 0 log 0 = 0, a log a
0 =

∞, a > 0 and 0 log 0
0 = 0 that are justified by continuity.

Theorem 8.2.6. Capacity on binary channels is strictly convex everywhere
except on the zero channels. That is, given u1, u2 ∈ [0, 1]2, u1 6= u2 and
t ∈ (0, 1), we have

c(tu1 + t̄u2) ≤ tc(u1) + t̄c(u2)

with equality if and only if both u1, u2 are zero channels.

Proof. We already know that c is convex from Theorem 8.1.3, we will only focus
on the equality condition. First we show that the mutual information Ip(u) is
strictly convex everywhere except on the zero channels, for a fixed nonzero p.
Let u1 = (a1, b1), u2 = (a2, b2) and ut = tu1 + t̄ut = (at, bt). We denote by
p1(y|x), p2(y|x), pt(y|x) the conditional distributions of u1, u2, ut where

p1(0|0) = a1 p1(0|1) = b1 p1(1|0) = ā1 p1(1|1) = b̄1

and similarly for the others. Given a nonzero input distribution p(x), we
denote by p1(x, y), p2(x, y), pt(x, y) the corresponding joint distributions and
p1(y), p2(y), pt(y) the corresponding marginals. It is easy to see that

pt(x, y) = tp1(x, y) + t̄p2(x, y) and
pt(y) = tp1(y) + t̄p2(y)

From the log sum inequality we have

pt(x, y) log
pt(x, y)
p(x)pt(y)

=

(
tp1(x, y) + t̄p2(x, y)

)
log

tp1(x, y) + t̄p2(x, y)
tp(x)p1(y) + t̄p(x)p2(y)

≤

tp1(x, y) log
tp1(x, y)
tp(x)p1(y)

+ t̄p2(x, y) log
t̄p2(x, y)
t̄p(x)p2(y)

By summing over all x, y ∈ {0, 1} and by definition of mutual information (2.1)
we get

Ip(ut) ≤ tIp(u1) + t̄Ip(u2)

with equality iff

tp1(x, y)
tp(x)p1(y)

=
t̄p2(x, y)
t̄p(x)p2(y)

p(x)6=0⇒ p1(y|x)
p1(y)

=
p2(y|x)
p2(y)

(8.3)

for all x, y ∈ {0, 1}. Assuming that all the elements of u1, u2 are nonzero, we
have:

a1

b1
=
a2

b2
and

ā1

b̄1
=
ā2

b̄2
(8.4)
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Letting k = a1
b1

, we get from the right-hand side:

(1− a1)(1− b2) = (1− a2)(1− b1)⇒
kb1 + b2 = kb2 + b1 ⇒
b1(k − 1) = b2(k − 1)

from which we get b1 = b2 or k = 1 and since we assumed u1 6= u2 we have
k = 1 and as a consequence a1 = b1 and a2 = b2.

Now consider the case b1 = 0. If a1 > 0 then p1(0) > 0 and from (8.3)
we get b2 = 0 and from the right side of (8.4) we get a1 = a2 = 1, which is
impossible since we assumed u1 6= u2. If a1 = 0 then from (8.4) we get a2 = b2
so the statement holds. Similarly for b1 = 1 and the other extreme cases.

Finally let p1, p2, p be the capacity achieving distributions of the channels
u1, u2, ut respectively, we have

tc(u1) + tc(u2) = tIp1(u1) + tIp2(u2) definition of c(u)

≥ tIp(u1) + tIp(u2) pi gives the best Ipi
(ui)

≥ Ip(tu1 + tu2) Theorem 8.1.2

= c(tu1 + tu2) definition of c(u)

Suppose that equality holds. This means that Ipi
(ui) = Ip(ui), that is p is a

capacity achieving distribution for both u1, u2. Also it means that Ip(ut) =
tIp(u1) + t̄Ip(u2) which (assuming that p is nonzero) implies that u1, u2 are
zero channels. If p(0) or p(1) is zero, and since p is the capacity achieving
distribution, then the capacity of all u1, u2, ut is zero, in other words they are
zero channels.

The equality c(tu1 + t̄u2) = tc(u1) + t̄c(u2) essentially means that the ca-
pacity is linear between u1 and u2. The above theorem states that this only
happens along the line of zero channels, as can be clearly seen in the graph of
Figure 8.1.

8.3 Relations between channels

In this section, we consider partial orders on binary channels with respect to
which capacity is monotone. Their importance stems from the fact that a
statement like “x ≤ y” is much easier to verify than a statement like “c(x) ≤
c(y)”. This is particularly useful in situations where the noise matrix of a
channel depends on some parameter of the protocol, like the distribution of
the coins in the Dining Cryptographers or the probability of forwarding in
Crowds, allowing us to provide bounds for large classes of protocol instances.

8.3.1 Algebraic information theory

Algebraic information theory uses the interplay of order, algebra and topology
to study communication. In [MMA06] it is shown that the interval domain with
the inclusion order can be used to fruitfully reason about binary channels.

Recall that a partial order on a set is a relation which is reflexive, transitive
and antisymmetric.
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8. A monotonicity principle

Definition 8.3.1. The interval domain is the set of non-negative binary chan-
nels (N,v) together with the partial order v defined by

x v y iff b ≤ d & c ≤ a,

for x = (a, b) ∈ N and y = (c, d) ∈ N. The natural measurement µ : N→ [0, 1]∗

is given by
µx = det(x) = a− b

where x = (a, b) ∈ N.

This is not the usual notation in domain theory for the interval domain,
but experience has taught us that this is the simplest way of handling things in
the context of information theory. The following result is proved in [MMA06]:

Theorem 8.3.2. Let (N, ·) denote the monoid of non-negative channels.

• The right zero elements of N are precisely the zero channels,

• The maximally commutative submonoids of N are precisely the lines which
join the identity to a zero channel,

• For any maximally commutative submonoid π ⊆ N,

(∀x, y ∈ π) x v y ⇔ µx ≥ µy ⇔ cx ≥ cy

• Capacity c : N→ [0, 1]∗ is monotone: if x v y, then c(x) ≥ c(y).

We will now see that the monotonicity principle offers a new order ≤ on
channels that leads to a clear and significant extension of algebraic information
theory.

8.3.2 A new partial order on binary channels

By the monotonicity principle, capacity decreases along any line that ends on a
zero capacity channel. This suggests a new way of ordering positive channels:

Definition 8.3.3. For two positive channels x = (a, b) and y = (c, d),

x ≤ y ≡ c · µx ≥ a · µy and c̄ · µx ≥ ā · µy

Proposition 8.3.4.

(i) The relation ≤ is a partial order on the set P of positive channels,

(ii) For x, y ∈ P, if x v y, then x ≤ y. In particular, the least element of
(P,≤) is the identity channel ⊥ = (1, 0),

(iii) For x, y ∈ P, we have x ≤ y iff there is a line segment that begins at x,
passes through y and ends at some point of {(t, t) : t ∈ [0, 1]},

(iv) Capacity c : P → [0, 1]∗ is strictly monotone: if x ≤ y, then c(x) ≥ c(y)
with equality iff x = y.
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Proof. (i) Reflexivity is immediate from the definition of ≤. For antisymmetry
we first notice that

x ≤ y ∧ µx = µy ⇒ x = y (8.5)

Then assuming x ≤ y and y ≤ x we have c ·µx = a ·µy and c̄ ·µx = ā ·µy from
which we conclude that µx = µy thus x = y (by (8.5)).

For transitivity, assume x ≤ y and y ≤ z. Write x = (a, b), y = (c, d) and
z = (e, f). Then we have

c · µx ≥ a · µy
e · µy ≥ c · µz

}
⇒ c · µx ≥ ac

e
µz ⇒ e · µx ≥ a · µz

(if e = 0 or c = 0 we can easily get the same result). Similarly we can show
that ē · µx ≥ ā · µz thus x ≤ z, establishing transitivity.

(ii) Write x = (a, b) and y = (c, d). Assume x v y thus c ≤ a and b ≤ d.
By subtracting the two we get µx ≥ µy. Then we have c ≤ a thus c̄ ≥ ā, which
gives c̄ · µx ≥ ā · µy. Finally from c ≤ a, b ≤ d we get

ad ≥ cb⇒
ca− cb ≥ ca− ad⇒
c(a− b) ≥ a(c− d)

thus c · µx ≥ a · µy which gives x ≤ y.
(iii) First, assume x ≤ y thus

c · µx ≥ a · µy (8.6)
c̄ · µx ≥ ā · µy (8.7)

The case x = y is trivial. If x 6= y then by adding (8.6) and (8.7) we get
µx ≥ µy and by (8.5) we get µx > µy. so the expression

α :=
c · µx− a · µy
µx− µy

is well-defined. By (8.6) we have α ≥ 0 and by (8.7) we get α ≤ 1. Thus (α, α)
is a zero channel. The line from x to (α, α), given by π(t) = (1− t)x+ t(α, α)
for t ∈ [0, 1], passes through y since

π

(
µx− µy
µx

)
= y

which finishes the proof in this direction.
Conversely, suppose there is a line π(t) = (1 − t)x + t(α, α) from x to a

zero channel (α, α) ∈ [0, 1]2 that passes through y. Then for some s ∈ [0, 1],
π(s) = y. Writing y = (c, d), this value of s satisfies

sα+ (1− s)a = c & sα+ (1− s)b = d

Subtracting the second equation from the first, (1 − s) = µy/µx ∈ [0, 1], so
µx ≥ µy. If µx = µy, then s = 0, which gives π(s) = y = π(0) = x and hence
x ≤ y. Otherwise, µx > µy, and from the first equation relating s and α,

α =
c · µx− a · µy
µx− µy
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8. A monotonicity principle

Figure 8.2: Geometric representation of v,≤.

Since 0 ≤ α ≤ 1 we have that (8.6),(8.7) both hold and hence x ≤ y.
(iv) Strict monotonicity follows from (iii) and Theorems 8.1.1 and 8.2.6.

Notice that the monotonicity of capacity on (N,v), given in Theorem 8.3.2,
is now a trivial consequence of (ii) and (iv) in Proposition 8.3.4, showing also
that capacity is strictly monotone wrt v.

8.3.3 The coincidence of algebra, order and geometry

Each order is given by a simple formula that is easy to verify in practice: for
x = (a, b) ∈ P and y = (c, d) ∈ P,

• x v y iff b ≤ d and c ≤ a,

• x ≤ y iff c · µx ≥ a · µy and c̄ · µx ≥ ā · µy.

Each also has a clear geometric significance which makes it easy to reason
about: for x = (a, b) ∈ P and y ∈ P,

• x v y iff y is contained in the triangle with vertices {(a, a), x, (b, b)} iff
there is a line segment from x to a point of {(t, t) : t ∈ [b, a]} that passes
through y.

• x ≤ y iff y is contained in the triangle with vertices {(0, 0), x, (1, 1)} iff
there is a line segment from x to a point of {(t, t) : t ∈ [0, 1]} that passes
through y.

A geometric interpretation of these orders is shown in Figure 8.2. Remarkably,
each of these orders can also be characterized algebraically:

Lemma 8.3.5. For x, y ∈ P,

(i) x v y iff (∃z ∈ P) zx = y,

(ii) x ≤ y iff (∃z ∈ P)xz = y.

Proof. (i) Write x = (a, b). If x v y, then x ≤ y, so by Prop. 8.3.4(ii), there
is a line segment π : [0, 1] → N :: π(s) = (1 − s)x + s(α, α) with π(t) = y for
some t ∈ [0, 1]. Define z = (c, d) by

c := 1 + t · α− a
a− b & d := t · α− b

a− b
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Because x v y, b ≤ α ≤ a, which ensures that c, d ∈ [0, 1], so that z is a
channel. Moreover, z is positive since det(z) = c− d = 1− t > 0, which holds
since y = π(t) ∈ P and π(1) = (α, α) 6∈ P. Finally,

zx = (t̄a+ tα, t̄b+ tα) = π(t) = y

which finishes this direction. Conversely, if there is z ∈ P with zx = y, then it
is straightforward to verify that x v zx, so x v y.

(ii) Write x = (a, b). If x ≤ y, then by Prop. 8.3.4(ii), there is a line segment
π : [0, 1] → N :: π(s) = (1 − s)x + s(α, α) with π(t) = y for some t ∈ [0, 1].
First notice that t < 1 since π(t) = y ∈ P and π(1) 6∈ P. Define z = (c, d) by

c := (1− t) + αt & d := αt

We have c, d ∈ [0, 1] because α, t ∈ [0, 1] and det(z) = 1− t > 0 since t < 1, so
z is a positive channel. Finally,

xz = (c− d)x+ d(1, 1) = (1− t)x+ t(α, α) = y

which finishes this direction. Conversely, suppose there is z ∈ P with xz = y.
Write z = (c, d). If z = (1, 0), then x = zx = y and we are done, so we can
assume det(z) = c− d < 1, which lets us define

α :=
d

1− det(z)
∈ [0, 1] & t := 1− det(z) ∈ [0, 1]

Because y = xz = (1 − t)x + t(α, α), we know that y lies on the line segment
from x to (α, α), which by Prop. 8.3.4(ii) implies x ≤ y.

Thus, despite the somewhat awkward formulation of ≤ given in Defini-
tion 8.3.3, we see that ≤ is nevertheless quite natural. In fact, from the point
of view of information theory, it is more natural than v:

Theorem 8.3.6. Let (P, ·, 1) denote the monoid of positive binary channels.

(i) The relation
x ≤ y ≡ (∃z ∈ P)xz = y

defines a partial order on P with respect to which capacity c : P→ [0, 1]∗

is strictly monotone,

(ii) The operator lx : P→ P :: lx(y) = xy is monotone with respect to ≤,

(iii) The operator rx : P→ P :: rx(y) = yx is monotone with respect to ≤.

Proof. (i) Follows from Lemma 8.3.5(ii) and Prop. 8.3.4. For (ii), let a ≤ b.
By Lemma 8.3.5(ii), there is c ∈ P with b = ac. Then

lx(b) = xb = x(ac) = (xa)c = lx(a)c

so by Lemma 8.3.5(ii), we have lx(a) ≤ lx(b).
(iii) Let a ≤ b. By Lemma 8.3.5(ii), there is c ∈ P with b = ac. Proceeding

as in the proof of (ii),
rx(b) = bx = (ac)x
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8. A monotonicity principle

which does not appear to help much. However, by Lemma 8.3.5(i), x v cx, and
hence x ≤ cx by Proposition 8.3.4. Thus, by Lemma 8.3.5(ii), there is z ∈ P
with xz = cx, so

rx(b) = (ac)x = a(cx) = a(xz) = (ax)z = rx(a)z

which means that rx(a) ≤ rx(b) by Lemma 8.3.5(ii).

By contrast, rx is monotone with respect to v, but lx is not. The reason for
this difference is that P ·x ⊆ x ·P holds for all x ∈ P, and this inclusion is strict.
So even though P is not commutative, it has a special property commutative
monoids have which ensures that both lx and rx are monotone with respect to
≤. The monotonicity of lx and rx implies that

(∀ a, b, x, y ∈ P)x ≤ y ⇒ c(axb) ≥ c(ayb)
with equality iff x = y since axb ≤ ayb and c(axb) = c(ayb) implies axb = ayb
which from Lemma 8.2.4 implies that x = y. The above inequality, in turn,
has an important and new consequence for information theory:

Corollary 8.3.7. For all a, b, x, y ∈ P,

c(axyb) ≤ min{c(axb), c(ayb)}
with equality iff x = 1 or y = 1.

Proof. Since 1 ≤ x, we can multiply on the right by y to get y ≤ xy. Similarly,
x ≤ xy. Since x, y ≤ xy, we can multiply on the left by a to get ax ≤ axy
and ay ≤ axy, and then multiply on the right by b to get axb ≤ axyb and
ayb ≤ axyb. The result now follows from the monotonicity of capacity. From
strict monotonicity, if c(axyb) = c(axb) then axyb = axb and from Lemma
8.2.4 y = 1. Similarly c(axyb) = c(ayb)⇔ x = 1.

In particular, for a = b = 1, the well-known inequality c(xy) ≤ min{c(x), c(y)}
follows. It is interesting indeed that it may be derived from an order which
itself may be derived from algebraic structure. This illustrates the value of
knowing about the coincidence of algebra, order and geometry.

8.4 Relations between monotone mappings on channels

Having just considered relations between binary channels, we now turn to re-
lations between monotone mappings on binary channels. Of particular interest
is the fascinating relationship between capacity and Euclidean distance.

8.4.1 Algebraic relations

Both capacity and Euclidean distance are invariant under multiplication by the
idempotent e = (0, 1):

Lemma 8.4.1. Let e := (0, 1).

(i) For any (a, b) ∈ [0, 1]2,

e · (a, b) = (b, a) & (a, b) · e = (ā, b̄),
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(ii) For any x ∈ [0, 1]2, c(ex) = c(xe) = c(x), and

(iii) For any x ∈ [0, 1]2, |det(ex)| = |det(xe)| = |det(x)|.
We now establish our first result which relates capacity to distance:

Theorem 8.4.2. For two binary channels x, y ∈ [0, 1]2,

c(xy) ≤ min{ c(x)|det(y)|, |det(x)|c(y) }.
with equality iff x (or y) is 1, e or a zero channel.

Proof. First assume that x, y ∈ N. Write x = (a, b) and y = (c, d). The product
xy can be written as a convex sum in two different ways:

xy = (c− d)(a, b) + d(1, 1) + c(0, 0) = det(y)(a, b) + d(1, 1) + c̄(0, 0) (8.8)

and

xy = (a− b)(c, d) + b(c, c) + ā(d, d) = det(x)(c, d) + b(c, c) + ā(d, d) (8.9)

The inequality now follows for x, y ∈ N by applying the convexity of capacity
to each expression for xy. By Theorem 8.2.6 the equality in (8.8) holds iff one
of the convex coefficients is 1 or all convexly added channels are zero channels.
That is, iff det(y) = 1 ⇒ y = 1 or (a, b) = x is a zero channel (note that
d, c̄ cannot be 1). Similarly, we have equality in (8.9) iff x = 1 or y is a zero
channel.

To finish the proof, we now consider the three remaining cases: (1) x 6∈
N, y ∈ N, (2) x ∈ N, y 6∈ N, (3) x 6∈ N, y 6∈ N. For (1), we use Lemma 8.4.1(ii)
and associativity of channel multiplication to get

c(xy) = c(e(xy)) = c((ex)y)

But the channels ex and y are non-negative, so

c(xy) = c((ex)y)
≤ min{ c(ex)|det(y)|, |det(ex)|c(y) }
= min{ c(x)|det(y)|, |det(x)|c(y) }

where the last equality holds by Lemma 8.4.1(ii) and Lemma 8.4.1(iii). The
equality holds if x or y are zero channels, y = 1 or ex = 1 ⇒ x = e. For (2),
we write c(xy) as

c(xy) = c((xy)e) = c(x(ye))

and just as with (1), we see that the desired inequality holds. For (3), we use

c(xy) = c(e(xy)) = c((ex)y)

which reduces the problem to the case just settled in (2), finishing the proof.

The last result extends to any convex function on N. It gives a new proof
of a well-known result in information theory.

Corollary 8.4.3. For x, y ∈ [0, 1]2, c(xy) ≤ min{c(x), c(y)} with equality iff x
(or y) is 1, e or a zero channel.
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Proof. Simply use the fact that |det(x)| ≤ 1.

It also sheds light on the relation between Euclidean distance and capacity:

Corollary 8.4.4. For a binary channel x ∈ [0, 1]2, c(x) ≤ |det(x)| with equality
iff x is 1, e or a zero channel.

Proof. By replacing x with ex if necessary, we can assume that x ∈ N. Now
take y to be the identity channel, which has capacity c(y) = det(y) = 1.

Intuitively, the Euclidean distance |det | is a canonical upper bound on
capacity. Our goal now is to prove this. First, |det | is determined by its value
on the set N of non-negative channels. Next, as a function on N, it preserves
multiplication, convex sum and identity. There are only two functions like this
in existence:

Theorem 8.4.5. If f : N→ [0, 1] is a function such that

• f(1) = 1

• f(xy) = f(x)f(y)

• f(px+ p̄y) = pf(x) + p̄f(y)

then either f ≡ 1 or f = det.

Proof. Assume that f is not a constant function, so that f(x) 6= 1 for some
x ∈ N. We can now calculate the value of f at a zero channel (α, α):

f(α, α) = f(x · (α, α)) = f(x)f(α, α)

and since f(x) < 1, (1−f(x))f(α, α) = 0 implies that f(α, α) = 0. This allows
us to determine the value of f along the x-axis since

f(a, 0) = f(a · (1, 0) + ā · (0, 0)) = af(1, 0) + āf(0, 0) = a · 1 + ā · 0 = a

and also along the line a = 1,

f(1, b) = f(b̄ · (1, 0) + b · (1, 1)) = b̄f(1, 0) + bf(1, 1) = b̄ · 1 + b · 0 = 1− b

Since any non-negative channel (a, b) 6= (0, 0) can be written as a product of
Z-channels,

(a, b) = (1, b/a) · (a, 0)

we have

f(a, b) = f((1, b/a) · (a, 0)) = f(1, b/a) · f(a, 0) = (1− b/a)a = a− b = det(a, b)

and are finished.

Thus, there is only one nontrivial convex-linear homomorphism above ca-
pacity: the determinant. This raises the question of how close in value the two
are.
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8.4.2 Inequalities

In the formulation of ≤ given in Definition 8.3.3, the case µx = µy is specifically
excluded i.e. channels that lie on a line of constant determinant do not compare
with respect to ≤ unless they are equal. The behavior of capacity on such lines
is more involved than it is for lines that hit the diagonal. We now turn to
this important special case, and once again, find the monotonicity principle
indispensable.

Consider a line in N of fixed determinant, that is, a line joining the Z-
channels (d, 0) and (1, 1− d):

πd(t) = t(1, 1− d) + t̄(d, 0)

Let c(t) denote the capacity of the channel πd(t).

Theorem 8.4.6. The function c ◦ πd for d > 0 is strictly monotonically de-
creasing on [0, 1

2 ] and strictly monotonically increasing on [ 1
2 , 1]. For d = 0 it

is constant and equal to 0.

Proof. First we prove that c ◦ πd is symmetric about 1/2. The line πd is given
by πd(t) = (a(t), b(t)), where a(t) = t(1 − d) + d and b(t) = t(1 − d). Notice
that a(t) = b(t) and b(t) = a(t). Using these equations and Lemma 8.4.1(ii),
we have

c( t̄ ) = c(a(t̄), b(t̄)) = c(b(t), a(t)) = c(a(t), b(t)) = c(t)

However, because c ◦πd is convex, as the composition of a convex function and
a line, this implies that its absolute minimum value is assumed at t = 1/2: for
any t ∈ [0, 1],

c(t) = 1
2c(t) + 1

2c(t)

= 1
2c(t) + 1

2c(t) symmetry of c(t)

≥ c( 1
2 t+ 1

2 t) convexity of c(t)

= c( 1
2 )

For d > 0 the capacity is strictly convex on πd. By Theorem 8.1.1, then,
capacity is strictly decreasing along the line πd : [0, 1/2] → N. Again by
Theorem 8.1.1, capacity is strictly decreasing along the line π : [0, 1] → N
given by π(t) = πd(1− t/2), which means it is strictly increasing along the line
πd : [1/2, 1]→ N. The line π0 is the line of zero channels where the capacity is
always 0.

We have derived the following lower and upper bounds on the capacity:

Corollary 8.4.7. For any binary channel x ∈ [0, 1]2,

1−H
(

1− | det(x)|
2

)
≤ c(x) ≤ log2

(
1 + 2

−H(| det(x)|)
| det(x)|

)
with the understanding that the expression on the right is zero when det(x) = 0.
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Proof. By the symmetry of capacity, we know that c(x) is bounded from be-
low by the capacity of the binary symmetric channel ((1 + |det(x)|)/2, (1 −
|det(x)|)/2), which is the expression on the left, and bounded from above by
the capacity of the Z channel (|det(x)|, 0), which is the expression on the
right.

The bounds in Corollary 8.4.7 are canonical:

Definition 8.4.8. A function f : [0, 1]2 → R is called det-invariant if

|det(x)| = |det(y)| ⇒ f(x) = f(y)

for all x, y ∈ N.

Thus, a det-invariant function is one whose value depends only on the mag-
nitude of the channel’s determinant – in particular, such functions are sym-
metric.

Corollary 8.4.9.

• The supremum of all det-invariant lower bounds on capacity is

a(x) = 1−H
(

1− | det(x)|
2

)
• The infimum of all det-invariant upper bounds on capacity is

b(x) = log2

(
1 + 2

−H(| det(x)|)
| det(x)|

)
Proof. Each x ∈ N lies on a line π of constant determinant which joins p =
(det(x), 0) to q = ((1 + det(x))/2, (1− det(x))/2). If f is a det-invariant lower
bound on capacity,

f(x) = f(q) ≤ c(q) = 1−H
(

1− | det(x)|
2

)
while for any det-invariant upper bound g we have

log2

(
1 + 2

−H(| det(x)|)
| det(x)|

)
= c(p) ≤ g(p) = g(x).

The argument above applies if x 6∈ N since all functions involved are symmetric.
Finally, a and b are themselves det-invariant, so the proof is finished.

The best det-invariant lower bound in Corollary 8.4.7 is the key idea in
determining how close in value that |det | is to c:

Theorem 8.4.10.

sup
(a,b)∈[0,1]2

|det(a, b)| − c(a, b) = log2(5/4)

This supremum is attained by the channels (4/5, 1/5) and (1/5, 4/5).
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Proof. The expression we are maximizing is symmetric, so for the purposes of
calculation, we can take this supremum over the set of nonnegative channels N.
Let (a, b) ∈ N. Then det(a, b) = a − b ≥ 0. Let y ∈ N be a binary symmetric
channel with det(y) = det(a, b). Then

|det(a, b)| − c(a, b) = det(a, b)− c(a, b) = det(y)− c(a, b) ≤ det(y)− c(y)

Then we can calculate our supremum by considering only nonnegative binary
symmetric channels, which can be parametrized by {(1 − p, p) : p ∈ [0, 1/2]}.
Thus, we need only maximize the function

f(p) = det(1− p, p)− c(1− p, p) = (1− 2p)− (1−H(p))

over the interval [0, 1/2], where H is the base two entropy. The derivative of f
on (0, 1/2) is

f ′(p) = −2 + log2(p̄/p)

Then f ′(p) > 0 iff p ∈ (0, 1/5), f ′(p) < 0 iff p ∈ (1/5, 1/2), and f ′(1/5) = 0.
Thus, f has a maximum value at p = 1/5, given by

f(1/5) = H(1/5)− 2/5 = log2(5/4),

which finishes the proof.

The number log2(5/4) is approximately equal to 0.3219. Because |det | itself
is a det-invariant upper bound on capacity, b(x) ≤ |det(x)| by Corollary 8.4.9,
and we have the following chain of inequalities:

a(x) ≤ c(x) ≤ b(x) ≤ |det(x)| ≤ c(x) + log2

(
5
4

)
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Nine

Hypothesis testing and the
probability of error

As we saw in Chapter 7, probabilistic anonymity systems can be fruitfully re-
garded as information-theoretic channels, where the inputs are the anonymous
events, the outputs are the observables and the channel matrix represents the
correlation between the anonymous and observed events, in terms of condi-
tional probabilities. An adversary can try to infer the anonymous event that
took place from his observations using the Bayesian method, which is based on
the principle of assuming an a priori probability distribution on the anonymous
events (hypotheses), and deriving from that (and from the matrix) the a poste-
riori probability distribution after a certain event has been observed. It is well
known that the best strategy for the adversary is to apply the MAP (Maxi-
mum Aposteriori Probability) criterion, which, as the name says, dictates that
one should choose the hypothesis with the maximum a posteriori probability
given the observation. “Best” means that this strategy induces the smallest
probability of guessing the wrong hypothesis. The probability of error, in this
case, is also called Bayes risk.

Even if the adversary does not know the a priori distribution, the method
is still valid asymptotically, under the condition that the matrix’s rows are all
pairwise distinguished. By repeating the experiment, the contribution of the a
priori probability becomes less and less relevant for the computation of the a
posteriori probability, and it “washes out” in the limit [CT91]. Furthermore,
the probability of error converges to 0 in the limit. If the rows are all equal,
namely if the channel has capacity 0, then the Bayes risk is maximal and
does not converge to 0. This is the ideal situation, from the point of view
of information-hiding protocols. In practice, however, it is difficult to achieve
such degree of anonymity.

In general we are interested in maximizing the Bayes risk. The main purpose
of this chapter is to investigate the Bayes risk, in relation to the channel’s
matrix, and to produce bounds on it.

There are many bounds known in literature for the Bayes risk. An interest-
ing class of such bounds is based on relations with the conditional entropy of the
channel’s input given the output (equivocation). The first result of this kind,
found by Rényi [Rén66], established that the probability of error is bounded

109



9. Hypothesis testing and the probability of error

by the equivocation. Later, Hellman and Raviv improved this bound by half
[HR07]. Recently, Santhi and Vardy have proposed a new bound, that depends
exponentially on the (opposite of the) equivocation, and which considerably im-
proves the Hellman-Raviv bound in the case of multi-hypothesis testing [SV06].
The Hellman-Raviv bound, however, is better than the Santhi-Vardy bound in
the case of two hypotheses.

Contribution The contribution of this chapter consists of the following:

• We consider what we call “the corner points” of a piecewise linear func-
tion, and we propose criteria to compute the maximum of the function,
and to identify concave functions that are upper bounds for the given
piecewise linear function, based on the analysis of its corner points only.

• We develop a technique that allows us to prove that a certain set of points
is a set of corner points of a given function. By using the notion of corner
points, we are able to give alternative proofs of the Hellman-Raviv and
the Santhi-Vardy bounds, much simpler than the original proofs.

• We show that the probability of error associated to the MAP rule is
piecewise linear, and we give a constructive characterization of a set of
corner points, which turns out to be finite. This characterization is the
central and most substantial result of this chapter.

• Using the above results, we establish methods (a) to compute the max-
imum probability of error over all the input distributions, and (b) to
improve on the Hellman-Raviv and the Santhi-Vardy bounds. In partic-
ular, our improved bounds always are tight at least at one point, while
the others are tight at some points only in case of channels of capacity 0.

• We show how to apply the above results to randomized protocols for
anonymity. In particular, we work out in detail the application to Crowds,
and derive the maximum probability of error for an adversary who tries to
break anonymity, and bounds on this probability in terms of conditional
entropy, for any input distribution.

• We explore the consequences of protocol repetition for hypothesis testing.
If the rows of the matrix are pairwise different, then the MAP rule can
be approximated by a rule called Maximum Likelihood, which does not
require the knowledge of the a priori distribution. Furthermore, the
probability of error converges to 0 as the number of repetitions increases.
We also show the converse, namely if two or more rows are identical, then
the probability of error of any decision rule has a positive lower bound.
The first result is an elaborations of a remark we found in [CT91] and the
second is an easy consequence of the theorem of the central limit. The
latter is, to the best of our knowledge, our contribution, in the sense that
we were not able to find it in literature.

Plan of the chapter Next section recalls some basic notions in information
theory, and about hypothesis testing and the probability of error. Section 9.2
proposes some methods to identify bounds for a function that is generated by a
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set of corner points; these bounds are tight on at least one corner point. Using
the notion of corner points we show an alternative proof of the Hellman-Raviv
and the Santhi-Vardy bounds. Section 9.3 presents the main result of this
chapter, namely a constructive characterization of the corner points of Bayes
risk. Section 9.4 illustrates an application of our results to Crowds. Section
sec:hyp:repetition considers the case of protocol repetition. Finally Section 9.6
discusses related work.

9.1 Hypothesis testing and the probability of error

In this section we briefly review some basic notions on hypothesis testing.
We consider discrete channels (A,O, pc) where the sets of input values A

and output values O are finite with cardinality n and m respectively. We will
also sometimes use indices to represent their elements: A = {a1, a2, . . . , an}
and O = {o1, o2, . . . , om}. The matrix pc of the channel gives the conditional
probability of observing an output given a certain input, the usual convention
is to arrange the a’s by rows and the o’s by columns.

The set of input values can also be regarded as a set of mutually exclu-
sive (hidden) facts or hypotheses. A probability distribution pA over A is
called a priori probability, and together with the channel it induces a joint
probability distribution p over A × O as p(a, o) = pA(a) pc(o|a) such that
p([o]|[a]) = pc(o|a), where [a] = {a} × O, [o] = A × {o}. As usual, we of-
ten write p(a), p(o), p(o|a) instead of p([a]), p([o]), p([o]|[a]) for simplicity. The
probability

p([o]) =
∑
a

p(a, o) =
∑
a

pA(a) pc(o|a)

is called the marginal probability of o ∈ O.
When we observe an output o, the probability that the corresponding input

has been a certain a is given by the conditional probability p(a|o), also called a
posteriori probability of a given o, which in general is different from p(a). This
difference can be interpreted as the fact that observing o gives us evidence
that changes our degree of belief in the hypothesis a. The a priori and the a
posteriori probabilities of a are related by Bayes’ theorem:

p(a|o) =
p(o|a) p(a)

p(o)

In hypothesis testing we try to infer the true hypothesis (i.e. the input
fact that really took place) from the observed output. In general, it is not
possible to determine the right hypothesis with certainty. We are interested,
then, in minimizing the probability of error, i.e. the probability of making the
wrong guess. Formally, the probability of error is defined as follows. Given the
decision function f : O → A adopted by the observer to infer the hypothesis,
let Ef : A → 2O be the function that gives the error region of f when a ∈ A
has occurred, namely:

Ef (a) = {o ∈ O | f(o) 6= a}
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Let ηf : A → [0, 1] be the function that associates to each a ∈ A the probability
that f gives the the wrong input fact when a ∈ A has occurred, namely:

ηf (a) =
∑

o∈Ef (a)

p(o|a)

The probability of error for f is then obtained as the sum of the probability of
error for each possible input, averaged over the probability of the input:

Pf =
∑
a

p(a) ηf (a)

In the Bayesian framework, the best possible decision function fB , namely
the decision function that minimizes the probability of error, is obtained by
applying the MAP (Maximum Aposteriori Probability) criterion, that chooses
an input a with a maximal p(a|o). Formally:

fB(o) = a ⇒ ∀a′ p(a|o) ≥ p(a′|o)

A decision function that satisfies the above condition will be called MAP deci-
sion function. The probability of error associated to fB , also called the Bayes
risk, is then given by

Pe = 1−
∑
o

p(o) max
a

p(a|o) = 1−
∑
o

max
a

p(o|a) p(a)

Note that fB , and the Bayes risk, depend on the inputs’ a priori probability.
The input distributions can be represented as the elements ~x = (x1, x2, . . . , xn)
of a domain D(n) defined as

D(n) = {~x |
∑
i

xi = 1 and ∀i xi ≥ 0}

where the correspondence is given by ∀i xi = p(ai). In the rest of the chapter
we will assume the MAP rule and view the Bayes risk as a function Pe : D(n) →
[0, 1] defined by

Pe(~x) = 1−
∑
i

max
j
p(oi|aj)xj (9.1)

There are some notable results in the literature relating the Bayes risk to
the information-theoretic notion of conditional entropy, also called equivocation.
A brief discussion about entropy is made in Section 2.2. We recall that the
entropy H(A) measures the uncertainty of a random variable A. It takes its
maximum value log n when A’s distribution is uniform and its minimum value 0
when A is constant. The conditional entropy H(A|O) measures the amount of
uncertainty of A when O is known. It can be shown that 0 ≤ H(A|O) ≤ H(A).
It takes its maximum value H(A) when O reveals no information about A, i.e.
when A and O are independent, and its minimum value 0 when O completely
determines the value of A.

Given a channel, let ~x be the a priori distribution on the inputs. Recall
that ~x also determines a probability distribution on the outputs. Let A and
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O be the random variables associated to the inputs and outputs respectively.
The Bayes risk is related to H(A|O) by the Hellman-Raviv bound [HR07]:

Pe(~x) ≤ 1
2
H(A|O) (9.2)

and by the Santhi-Vardy bound [SV06]:

Pe(~x) ≤ 1− 2−H(A|O) (9.3)

We remark that, while the bound (9.2) is tighter than (9.3) in case of binary
hypothesis testing, i.e. when n = 2, (9.3) gives a much better bound when n
becomes larger. In particular the bound in (9.3) is always limited by 1, which
is not the case for (9.2).

9.2 Convexly generated functions and their bounds

In this section we characterize a special class of functions on probability dis-
tributions, and we present various results regarding their bounds which lead
to methods to compute their maximum, to prove that a concave function is an
upper bound, and to derive an upper bound from a concave function. The in-
terest of this study is that the probability of error will turn out to be a function
in this class.

We recall than a subset S of a vector space is called convex if it is closed un-
der convex combination (see Section 2.3 for a brief discussion about convexity).
It is easy to see that for any n the domain D(n) of probability distributions
of dimension n (that is a (n − 1)-simplex) is convex. The convex hull of S,
denoted by ch(S) is the smallest convex set containing S. An interesting case
is when we can generate all elements of a set S from a smaller set U using
convex combinations. This brings us to the concept of convex base:

Definition 9.2.1. Given the vector sets S,U , we say that U is a convex base
for S if and only if U ⊆ S and S ⊆ ch(U).

In the following, given a vector ~x = (x1, x2, . . . , xn), and a function f from
n-dimensional vectors to reals, we will use the notation (~x, f(~x)) to denote
the vector (in a space with one additional dimension) (x1, x2, . . . , xn, f(~x)).
Similarly, given a vector set S in a n-dimensional space, we will use the notation
(S, f(S)) to represent the set of vectors {(~x, f(~x)) | ~x ∈ S} in a (n + 1)-
dimensional space. The notation f(S) represents the image of S under f , i.e.
f(S) = {f(~x) | ~x ∈ S}.

We are now ready to introduce the class of functions that we mentioned at
the beginning of this section:

Definition 9.2.2. Given a vector set S, a convex base U of S, and a function
f : S → R, we say that (U, f(U)) is a set of corner points of f if and only
if (U, f(U)) is a convex base for (S, f(S)). We also say that f is convexly
generated by f(U)1.

1To be more precise we should say that f is convexly generated by (U, f(U)).
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Of particular interest are the functions that are convexly generated by a
finite number of corner points. This is true for piecewise linear functions in
which S can be decomposed into finitely many convex polytopes (n-dimensional
polygons) and f is equal to a linear function on each of them. Such functions
are convexly generated by the finite set of vertices of these polytopes.

We now give a criterion for computing the maximum of a convexly generated
function.

Proposition 9.2.3. Let f : S → R be convexly generated by f(U). If f(U)
has a maximum element b, then b is the maximum value of f on S.

Proof. Let b be the maximum of f(U). Then for every u ∈ U we have that
f(u) ≤ b. Consider now a vector ~x ∈ S. Since f is convexly generated by
f(U), there exist ~u1, ~u2, . . . , ~uk in U such that f(~x) is obtained by convex
combination from f(~u1), f(~u2), . . . , f(~uk) via some convex coefficients λ1, λ2,
. . . , λk. Hence:

f(~x) =
∑
i λif(~ui)

≤ ∑
i λib since f(~ui) ≤ b

= b λi’s being convex combinators

Note that if U is finite then f(U) always has a maximum element.
Next, we propose a method for establishing functional upper bounds for f ,

when they are in the form of concave functions (see Section 2.3 for a definition
of concave functions).

Proposition 9.2.4. Let f : S → R be convexly generated by f(U) and let
g : S → R be concave. Assume that for all ~u ∈ U f(~u) ≤ g(~u) holds. Then we
have that g is an upper bound for f , i.e.

∀~x ∈ S f(~x) ≤ g(~x)

Proof. Let ~x be an element of S. Since f is convexly generated, there exist ~u1,
~u2, . . . , ~uk in U such that (~x, f(~x)) is obtained by convex combination from
(~u1, f(~u1)), (~u2, f(~u2)), . . . , (~uk, f(~uk)) via some convex coefficients λ1, λ2,
. . . , λk. Hence:

f(~x) =
∑
i λif(~ui)

≤ ∑
i λig(~ui) since f(~ui) ≤ g(~ui)

≤ g(
∑
i λi~u

i) by the concavity of g

= g(~x)

We also give a method to obtain functional upper bounds, that are tight
on at least one corner point, from concave functions.

114



Convexly generated functions and their bounds

Proposition 9.2.5. Let f : S → R be convexly generated by f(U) and let
g : S → R be concave and non-negative. Let R = {c | ∃~u ∈ U : f(~u) ≥ c g(~u)}
and assume that R has an upper bound. Then the function co g is a functional
upper bound for f satisfying

∀~x ∈ S f(~x) ≤ co g(~x)

where co = supR. If co ∈ R then f and co g coincide at least at one point.

Proof. We first show that f(~u) ≤ co g(~u) for all ~u ∈ U . Suppose the opposite,
then there exists ~u ∈ U such that f(~u) > co g(~u). If g(~u) = 0 then for all
c ∈ R : f(~u) > c g(~u) = 0 so the set R is not bounded, which is a contradiction.
If g(~u) > 0 (we assumed that g is non-negative) then let c = f(~u)

g(~u) so c > co but
also c ∈ R which is also a contradiction since c = supR.

Hence by Proposition 9.2.4 we have that co g is an upper bound for f .
Furthermore, if co ∈ R then there exists ~u ∈ U such that f(~u) ≥ co g(~u) so
f(~u) = co g(~u) and the bound is tight as this point.

Note that, if U is finite and ∀~u ∈ U : g(~u) = 0 ⇒ f(~u) ≤ 0, then the
maximum element of R always exists and is equal to

max
~u∈U,g(~u)>0

f(~u)
g(~u)

Finally, we develop a proof technique that will allow us to prove that a
certain set is a set of corner points of a function f . Let S be a set of vectors.
The extreme points of S, denoted by extr(S), is the set of points of S that
cannot be expressed as the convex combination of two distinct elements of
S. An subset of Rn is called compact if it is closed and bounded. Our proof
technique uses the Krein-Milman theorem which relates a compact convex set
to its extreme points.

Theorem 9.2.6 (Krein-Milman). A compact and convex vector set is equal to
the convex hull of its extreme points.

We refer to [Roy88] for the proof. Now since the extreme points of S are
enough to generate S, to show that a given set (U, f(U)) is a set of corner
points, it is sufficient to show that all extreme points are included in it.

Proposition 9.2.7. Let S be a compact vector set, U be a convex base of S
and f : S → R be a continuous function. Let T = S \ U . If all elements of
(T, f(T )) can be written as the convex combination of two distinct elements of
(S, f(S)) then (U, f(U)) is a set of corner points of f .

Proof. Let Sf = (S, f(S)) and Uf = (U, f(U)). Since S is compact and contin-
uous maps preserve compactness then Sf is also compact, and since the convex
hull of a compact set is compact then ch(Sf ) is also compact (note that we
didn’t require S to be convex). Then ch(Sf ) satisfies the requirements of the
Krein-Milman theorem, and since the extreme points of ch(Sf ) are clearly the
same as those of Sf we have

ch(extr(ch(Sf ))) = ch(Sf )⇒
ch(extr(Sf )) = ch(Sf ) (9.4)
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Now all points in Sf \Uf can be written as convex combinations of other (dis-
tinct) points, so they are not extreme. Thus all extreme points are contained
in Uf , that is extr(Sf ) ⊆ Uf , and since ch(·) is monotone with respect to set
inclusion, we have

ch(extr(Sf )) ⊆ ch(Uf )⇒
Sf ⊆ ch(Sf ) ⊆ ch(Uf ) by (9.4)

which means that Uf is a set of corner points of f .

The big advantage of the above proposition is that we need to express points
outside U as convex combinations of any other points, not necessarily of points
in U (as a direct application of the definition of corner points would require).

9.2.1 An alternative proof for the Hellman-Raviv and
Santhi-Vardy bounds

Using Proposition 9.2.4 we can give an alternative, simpler proof for the bounds
in (9.2) and (9.3). Let f : D(n) → R be the function f(~y) = 1 −maxj yj . We
start by identifying a set of corner points of f , using Prop. 9.2.7 to prove that
they are indeed corner points.

Proposition 9.2.8. The function f defined above is convexly generated by
f(U) with U = U1 ∪U2 ∪ . . .∪Un where, for each k, Uk is the set of all vectors
that have value 1/k in exactly k components, and 0 everywhere else.

Proof. We have to show that for any point ~x in S \U , (~x, f(~x)) can be written
as a convex combination of two points in (S, f(S)). Let w = maxi xi. Since
~x /∈ U then there is at least one element of ~x that is neither w nor 0, let xi be
that element. Let k the number of elements equal to w. We create two vectors
~y, ~z ∈ S as follows

yj =


xi + ε if i = j

w − ε
k if xj = w

xj otherwise
zj =


xi − ε if i = j

w + ε
k if xj = w

xj otherwise

where ε is a very small positive number, such that w− ε
k is still the maximum

element. Clearly ~x = 1
2~y + 1

2~z and since f(~x) = 1 − w, f(~y) = 1 − w + ε
k and

f(~y) = 1 + w − ε
k we have f(~x) = 1

2f(~y) + 1
2f(~z). Since f is continuous and

D(n) is compact, the result follows from Prop. 9.2.7.

Consider now the functions g, h : D(n) → R defined as

g(~y) =
1
2
H(~y) and h(~y) = 1− 2−H(~y)

where (with a slight abuse of notation) H represents the entropy of the distri-
bution ~y, i.e. H(~y) = −∑j yj log yj .

We now compare g, h withf(~y) = 1−maxj yj on the corner points on f . A
corner point ~uk ∈ Uk (defined in Prop. 9.2.8) has k elements equal to 1/k and
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the rest equal to 0. So H(~uk) = log k and

f(~uk) = 1− 1
k

g(~uk) =
1
2

log k

h(~u) = 1− 2− log k = 1− 1
k

So f(~u1) = 0 = g(~u1), f(~u2) = 1/2 = g(~u2), and for k > 2, f(~uk) < g(~uk). On
the other hand, f(~uk) = h(~uk), for all k.

Thus, both g and h are greater or equal than f on all the corner points so
from Proposition 9.2.4 we have

∀~y ∈ D(n) f(~y) ≤ g(~y) and f(~y) ≤ h(~y) (9.5)

The rest of the proof proceeds as in [HR07] and [SV06]: Let ~x represent
an a priori distribution on A and let the above ~y denote the a posteriori
probabilities on A with respect to a certain observable o, i.e. yj = p(aj |o) =
(p(o|aj)/p(o))xj . Then Pe(~x) =

∑
o p(o)f(~y), so from (9.5) we obtain

Pe(~x) ≤
∑
o

p(o)
1
2
H(~y) =

1
2
H(A|O) (9.6)

and

Pe(~x) ≤
∑
o

p(o)(1− 2−H(~y)) ≤ 1− 2−H(A|O) (9.7)

where the last step in (9.7) is obtained by applying Jensen’s inequality. This
concludes the alternative proof of (9.2) and (9.3).

We end this section with two remarks. First, we note that g coincides with
f only on the points of U1 and U2, whereas h coincides with f on all U . This
explains, intuitively, why (9.3) is a better bound than (9.2) for dimensions
higher than 2.

Second, we observe that, although h is a good bound for f , when we average
h and f on the output probabilities to obtain

∑
o p(o)(1 − 2−H(~y)) and Pe(~x)

respectively, and then we apply Jensen’s inequality, we usually loosen this
bound significantly, as we will see in some examples later. The only case in
which we do not loosen it is when the channel has capacity 0 (maximally noisy
channel), i.e. all the rows of the matrix are the same. In the general case
of non-zero capacity, however, this implies that if we want to obtain a better
bound we need to follow a different strategy. In particular, we need to find
directly the corner points of Pe instead than those of the f defined above. This
is what we are going to do in the next section.

9.3 The corner points of the Bayes risk

In this section we present our main contribution, namely we show that Pe
is convexly generated by Pe(U) for a finite U , and we give a constructive
characterization of U , so that we can apply the results of previous section to
compute tight bounds on Pe.
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The idea behind the construction of such U is the following: recall that the
Bayes risk is given by Pe(~x) = 1−∑i maxj p(oi|aj)xj . Intuitively, this function
is linear as long as, for each i, the j which gives the maximum p(oi|aj)xj
remains the same while we vary ~x. When, for some i and k, the maximum
becomes p(oi|ak)xk, the function changes its inclination and then it becomes
linear again. The exact point in which the inclination changes is a solution
of the equation p(oi|aj)xj = p(oi|ak)xk. This equation actually represents a
hyperplane (a space in n−1 dimensions, where n is the cardinality ofA) and the
inclination of Pe changes in all its points for which p(oi|aj)xj is maximum, i.e.
it satisfies the inequality p(oi|aj)xj ≥ p(oi|a`)x` for each `. The intersection
of n − 1 hyperplanes of this kind, and of the one determined by the equation∑
j xj = 1, is a vertex ~v such that (~v, Pe(~v)) is a corner point of Pe.

Definition 9.3.1. Given a channel C = (A,O, pc), the family S(C) of systems
generated by C is the set of all systems of inequalities of the following form:

pc(oi1 |aj1)xj1 = pc(oi1 |aj2)xj2
pc(oi2 |aj3)xj3 = pc(oi2 |aj4)xj4

...

pc(oir |aj2r−1)xj2r−1 = pc(oir |aj2r
)xj2r

xj = 0 for j 6∈ {j1, j2, . . . , j2r}
x1 + x2 + . . .+ xn = 1

pc(oih |aj2h
)xj2h

≥ pc(oih |a`)x` for 1 ≤ h ≤ r
and 1 ≤ ` ≤ n

such that all the coefficients p(oih |aj2h−1), p(oih |aj2h
) are strictly positive (1 ≤

h ≤ r), and the equational part has exactly one solution. Here n is the cardi-
nality of A, and r ranges between 0 and n− 1.

The variables of the above systems of inequalities are x1, . . . , xn. Note that
for r = 0 the system consists only of n−1 equations of the form xj = 0, plus the
equation x1 + x2 + . . .+ xn = 1. A system is called solvable if it has solutions.
By definition, a system of the kind considered in the above definition has at
most one solution.

The condition on the uniqueness of solution requires to (attempt to) solve
more systems than they are actually solvable. Since the number of systems of
equations of the form given in Definition 9.3.1 increases very fast with n, it is
reasonable to raise the question of the effectiveness of our method. Fortunately,
we will see that the uniqueness of solution can be characterized by a simpler
condition (cf. Proposition 9.3.7), however still producing a huge number of
systems. We will investigate the complexity of our method in Section 9.3.1.

We are now ready to state our main result:

Theorem 9.3.2. Given a channel C, the Bayes risk Pe associated to C is
convexly generated by Pe(U), where U is constituted by the solutions to all
solvable systems in S(C).
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Proof. We need to prove that, for every ~u ∈ D(n), there exist ~u1, ~u2, . . . , ~ut ∈ U ,
and convex coefficients λ1, λ2, . . . , λt such that

~u =
∑
i

λi~ui and Pe(~u) =
∑
i

λiPe(~ui)

Let us consider a particular ~u ∈ D(n). In the following, for each i, we will
use ji to denote the index j for which pc(oi|aj)uj is maximum. Hence, we can
rewrite Pe(~u) as

Pe(~u) = 1−
∑
i

pc(oi|aji)uji (9.8)

We proceed by induction on n. All conditional probabilities pc(oi|aj) that
appear in the proof are assumed to be strictly positive: we do not need to
consider the ones which are zero, because we are interested in maximizing the
terms of the form pc(oi|aj)xj .

Base case (n = 2) In this case U is the set of solutions of all the systems of
the form

{pc(oi|a1)x1 = pc(oi|a2)x2 , x1 + x2 = 1}
or

{xj = 0 , x1 + x2 = 1}
and ~u ∈ D(2). Let c be the minimum x ≥ 0 such that

pc(oi|a1)(u1 − x) = pc(oi|a2)(u2 + x) for some i

or let c be u1 if such x does not exist. Analogously, let d be the minimum
x ≥ 0 such that

pc(oi|a2)(u2 − x) = pc(oi|a1)(u1 + x) for some i

or let d be u2 if such x does not exist.
Note that pc(oi|a2)(u2+c) ≥ 0, hence u1−c ≥ 0 and consequently u2+c ≤ 1.

Analogously, u2 − d ≥ 0 and u1 + d ≤ 1. Let us define ~v, ~w (the corner points
of interest) as

~v = (u1 − c, u2 + c) ~w = (u1 + d, u2 − d)

Consider the convex coefficients

λ =
d

c+ d
µ =

c

c+ d

A simple calculation shows that

~u = λ~v + µ~w

It remains to prove that

Pe(~u) = λPe(~v) + µPe(~w) (9.9)
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To this end, it is sufficient to show that Pe is defined in ~v and ~w by the same
formula as (9.8), i.e. that Pe(~v), Pe(~w) and Pe(~u) are obtained as values, in
~v, ~w and ~u, respectively, of the same linear function. This amounts to show
that the coefficients are the same, i.e. that for each i and k the inequality
pc(oi|aji)vji ≥ pc(oi|ak)vk holds, and similarly for ~w.

Let i and k be given. If ji = 1, and consequently k = 2, we have
that pc(oi|a1)u1 ≥ pc(oi|a2)u2 holds. Hence for some x ≥ 0 the equality
pc(oi|a1)(u1 − x) = pc(oi|a2)(u2 + x) holds. Therefore:

pc(oi|a1)v1 = pc(oi|a1)(u1 − c) by definition of ~v

≥ pc(oi|a1)(u1 − x) since c ≤ x
= pc(oi|a2)(u2 + x) by definition of x

≥ pc(oi|a2)(u2 + c) since c ≤ x
= pc(oi|a1)v2 by definition of ~v

If, on the other hand, ji = 2, and consequently k = 1, we have:

pc(oi|a2)v2 = pc(oi|a2)(u2 + c) by definition of ~v

≥ pc(oi|a2)u2 since c ≥ 0

≥ pc(oi|a1)u1 since ji = 2

≥ pc(oi|a1)(u1 − c) since c ≥ 0

= pc(oi|a1)v1 by definition of ~v

The proof that for each i and k the inequality pc(oi|aji)wji ≥ pc(oi|ak)wk holds
is analogous.

Hence we have proved that

Pe(~v) = 1−
∑
i

pc(oi|aji)vji and Pe(~w) = 1−
∑
i

pc(oi|aji)wji

and a simple calculation shows that (9.9) holds.

Inductive case Let ~u ∈ D(n). Let c be the minimum x ≥ 0 such that for
some i and k

pc(oi|aji)(uji − x) = pc(oi|an)(un + x) ji = n− 1

or

pc(oi|aji)(uji − x) = pc(oi|ak)uk ji = n− 1 and k 6= n

or

pc(oi|aji)uji = pc(oi|an)(un + x) ji 6= n− 1

or let c be un−1 if such x does not exist. Analogously, let d be the minimum
x ≥ 0 such that for some i and k

pc(oi|aji)(uji − x) = pc(oi|an−1)(un−1 + x) ji = n

or

pc(oi|aji)(uji − x) = pc(oi|ak)uk ji = n and k 6= n− 1

or

pc(oi|aji)uji = pc(oi|an−1)(un−1 + x) ji 6= n
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or let d be un if such x does not exist. Similarly to the base case, define ~v, ~w
as

~v = (u1, u2, . . . , un−2, un−1 − c, un + c)

and
~w = (u1, u2, . . . , un−2, un−1 + d, un − d)

and consider the same convex coefficients

λ =
d

c+ d
µ =

c

c+ d

Again, we have ~u = λ~v + µ~w.
By case analysis, and following the analogous proof given for n = 2, we

can prove that for each i and k the inequalities pc(oi|aji)vji ≥ pc(oi|ak)vk and
pc(oi|aji)wji ≥ pc(oi|ak)wk hold, hence, following the same lines as in the base
case, we derive

Pe(~u) = λPe(~v) + µPe(~w)

We now prove that ~v and ~w can be obtained as convex combinations of
corner points of Pe in the hyperplanes (instances of D(n−1)) defined by the
equations that give, respectively, the c and d above. More precisely, if c = un−1

the equation is xn−1 = 0. Otherwise, the equation is of the form

pc(oi|ak)xk = pc(oi|a`)x`
and analogously for d. We develop the proof for ~w; the case of ~v is analogous.

If d = un, then the hyperplane is defined by the equation xn = 0, and
it consists of the set of vectors of the form (x1, x2, . . . , xn−1). The Bayes
risk is defined in this hyperplane exactly in the same way as Pe (since the
contribution of xn is null) and therefore the corner points are the same. By
inductive hypothesis, those corner points are given by the solutions to the set
of inequalities of the form given in Definition 9.3.1. To obtain the corner points
in D(n) it is sufficient to add the equation xn = 0.

Assume now that d is given by one of the other equations. Let us con-
sider the first one, the cases of the other two are analogous. Let us consider,
therefore, the hyperplane H (instance of D(n−1)) defined by the equation

pc(oi|an)xn = pc(oi|an−1)xn−1 (9.10)

It is convenient to perform a transformation of coordinates. Namely, represent
the elements of H as vectors ~y with

yj =

{
xj 1 ≤ j ≤ n− 2

xn−1 + xn j = n− 1
(9.11)

Consider the channel
C′ = 〈A′,O, p′(·|·)〉

with A′ = {a1, a2, . . . , an−1}, and

p′(ok|aj) =

{
pc(ok|aj) 1 ≤ j ≤ n− 2

max{p1(k), p2(k)} j = n− 1
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9. Hypothesis testing and the probability of error

where

p1(k) = pc(ok|an−1)
pc(oi|an)

pc(oi|an−1) + pc(oi|an)

(pc(oi|an) and pc(oi|an−1) are from (9.10)), and

p2(k) = pc(ok|an)
pc(oi|an−1)

pc(oi|an−1) + pc(oi|an)

The Bayes risk in H is defined by

Pe(~y) =
∑
k

max
1≤j≤n−1

p′(ok|aj)yj

and a simple calculation shows that Pe(~y) = Pe(~x) whenever ~x satisfies (9.10)
and ~y and ~x are related by (9.11). Hence the corner points of Pe(~x) over H
can be obtained from those of Pe(~y).

The systems in S(C) are obtained from those in S(C′) in the following way.
For each system in S(C′), replace the equation y1 + y2 + . . . + yn−1 = 1 by
x1 + x2 + . . . + xn−1 + xn = 1, and replace, in each equation, every oc-
currence of yj by xj , for j from 1 to n − 2. Furthermore, if yn−1 occurs
in an equation E of the form yn−1 = 0, then replace E by the equations
xn−1 = 0 and xn = 0. Otherwise, it must be the case that for some k1, k2,
p′(ok1 |an−1)yn−1 and p′(ok2 |an−1)yn−1 occur in two of the other equations. In
that case, replace p′(ok1 |an−1)yn−1 by pc(ok1 |an−1)xn−1 if p1(k1) ≥ p2(k1), and
by pc(ok1 |an)xn otherwise. Analogously for p′(ok2 |an−1)yn−1. Finally, add the
equation pc(oi|an)xn = pc(oi|an−1)xn−1. It is easy to see that the uniqueness
of solution is preserved by this transformation. The conversions to apply on
the inequality part are trivial.

Note that S(C) is finite, hence the U in Theorem 9.3.2 is finite as well.

9.3.1 An alternative characterization of the corner points

In this section we give an alternative characterization of the corner points of
the Bayes risk. The reason is that the new characterization considers only
systems of equations that are guaranteed to have a unique solution (for the
equational part). As a consequence, we need to solve much less systems than
those of Definition 9.3.1. We characterize these systems in terms of graphs.

Definition 9.3.3. A labeled undirected multigraph is a tuple G = (V,L,E)
where V is a set of vertices, L is a set of labels and E ⊆ {({v, u}, l) | v, u ∈
V, l ∈ L} is a set of labeled edges (note that multiple edges are allowed between
the same vertices). A graph is connected iff there is a path between any two
vertices. A tree is a connected graph without cycles. We say that a tree T =
(VT , LT , ET ) is a tree of G iff VT ⊆ V,LT ⊆ L,ET ⊆ E.

Definition 9.3.4. Let C = (A,O, pc) be a channel. We define its associated
graph G(C) = (V,L,E) as V = A, L = O and ({a, a′}, o) ∈ E iff pc(o|a),
pc(o|a′) are both positive.
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Definition 9.3.5. Let C = (A,O, pc) be a channel, let n = |A| and let T =
(VT , LT , ET ) be a tree of G(C). The system of inequalities generated by T is
defined as

pc(oi|aj)xj = pc(oi|ak)xk
pc(oi|aj)xj ≥ pc(oi|al)xl ∀ 1 ≤ l ≤ n

for all edges ({aj , ak}, oi) ∈ ET , plus the equalities

xj = 0 ∀aj /∈ VT
x1 + . . .+ xn = 1

Let T(C) be the set of systems generated by all trees of G(C).
An advantage of this characterization is that it allows an alternative, simpler

proof of Theorem 9.3.2. The two proofs differ substantially. Indeed, the new
one is non-inductive and uses the proof technique of Proposition 9.2.7.

Theorem 9.3.6. Given a channel C, the Bayes risk Pe associated to C is
convexly generated by (U,Pe(U)), where U is the set of solutions to all solvable
systems in T(C).

Proof. Let J = {1, . . . , |A|}, I = {1, . . . , |O|}. We define

m(~x, i) = max
k∈J

pc(oi|ak)xk Maximum for column i

Ψ(~x) = {i ∈ I | m(~x, i) > 0} Columns with non-zero maximum
Φ(~x, i) = {j ∈ J | pc(oi|aj)xj = m(~x, i)} Rows giving the maximum for col. i

The probability of error can be written as

Pe(~x) = 1−
∑
i∈I

pc(oi|aj(~x,i))xj(~x,i) where j(~x, i) = min Φ(~x, i) (9.12)

We now fix a point ~x /∈ U and we are going to show that there exist ~y, ~z ∈ D(n)

different than ~x such that (~x, Pe(~x)) = t(~y, Pe(~y)) + t̄(~z, Pe(~z)). Let M(~x) be
the indexes of the non-zero elements of ~x, that is M(~x) = {j ∈ J | xj > 0}
(we will simply write M if ~x is clear from the context. The idea is that we will
“slightly” modify some elements in M without affecting any of the sets Φ(~x, i).
We first define a relation ∼ on the set M as

j ∼ k iff ∃i ∈ Ψ(~x) : j, k ∈ Φ(~x, i)

and take ≈ as the reflexive and transitive closure of ∼ (≈ is an equivalence
relation). Now assume that ≈ has only one equivalence class, equal to M . Then
we can create a tree T as follows: we start from a single vertex aj , j ∈ M .
At each step, we find a vertex aj in the current tree such that j ∼ k for some
k ∈ M where ak is not yet in the tree (such a vertex always exist since M is
an equivalence class of ≈). Then we add a vertex ak and an edge ({aj , ak}, oi)
where i is the one from the definition of ∼. Note that since i ∈ Ψ(~x) we
have that pc(oi|aj), pc(oi|ak) are positive so this edge also belongs to G(C).
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9. Hypothesis testing and the probability of error

Repeating this procedure creates a tree of G(C) such that ~x is a solution to its
corresponding system of inequalities, which is a contradiction since ~x /∈ U .

So we conclude that ≈ has at least two equivalence classes, say C,D. The
idea is that we will add/subtract an ε from all elements of the class simultane-
ously, while preserving the relative ratio of the elements. We choose an ε > 0
small enough such that 0 < xj − ε and xj + ε < 1 for all j ∈ M and such
that subtracting it from any element does not affect the relative order of the
quantities pc(oi|aj)xj , that is

pc(oi|aj)xj > pc(oi|ak)xk ⇒ pc(oi|aj)(xj − ε) > pc(oi|ak)(xk + ε) (9.13)

for all i ∈ I, j, k ∈M .2 Then we create two points ~y, ~z ∈ D(n) as follows:

yj =


xj − xjε1 if j ∈ C
xj + xjε2 if j ∈ D
xj otherwise

zj =


xj + xjε1 if j ∈ C
xj − xjε2 if j ∈ D
xj otherwise

where ε1 = ε/
∑
j∈C xj and ε2 = ε/

∑
j∈D xj (note that xjε1, xjε2 ≤ ε) . It is

easy to see that ~x = 1
2~y+ 1

2~z, it remains to show that Pe(~x) = 1
2Pe(~y)+ 1

2Pe(~z).
We notice that M(~x) = M(~y) = M(~z) and Ψ(~x) = Ψ(~y) = Ψ(~z) since

xj > 0 iff yj > 0, zj > 0. We now compare Φ(~x, i) and Φ(~y, i). If i /∈ Ψ(~x)
then pc(oi|ak) = 0, ∀k ∈ M so Φ(~x, i) = Φ(~y, i) = J . Assuming i ∈ Ψ(~x),
we first show that pc(oi|aj)xj > pc(oi|ak)xk implies pc(oi|aj)yj > pc(oi|ak)yk.
This follows from (9.13) since

pc(oi|aj)yj ≥ pc(oi|aj)(xj − ε) > pc(oi|ak)(xk + ε) ≥ pc(oi|ak)yk

This means that k /∈ Φ(~x, i)⇒ k /∈ Φ(~y, i), in other words

Φ(~x, i) ⊇ Φ(~y, i) (9.14)

Now we show that k ∈ Φ(~x, i) ⇒ k ∈ Φ(~y, i). Assume k ∈ Φ(~x, i) and let
j ∈ Φ(~y, i) (note that Φ(~y, i) 6= ∅). By (9.14) we have j ∈ Φ(~x, i) which means
that pc(oi|ak)xk = pc(oi|aj)xj . Moreover, since i ∈ Ψ(~x) we have that j, k
belong to the same equivalence class of ≈. If j, k ∈ C then

pc(oi|ak)yk = pc(oi|ak)(xk − xkε1)
= pc(oi|aj)(xj − xjε1) pc(oi|ak)xk = pc(oi|aj)xj
= pc(oi|aj)yj

which means that k ∈ Φ(~y, i). Similarly for j, k ∈ D. If j, k /∈ C ∪ D then
xk = yk, xj = yj and the same result is immediate. So we have Φ(~x, i) =
Φ(~y, i), ∀i ∈ I. And symmetrically we can show that Φ(~x, i) = Φ(~z, i). This

2Let δi,j,k = pc(oi|aj)xj − pc(oi|ak)xk. It is sufficient to take

ε < min({
δi,j,k

pc(oi|aj) + pc(oi|aj)
| δi,j,k > 0} ∪ {xj | j ∈M})
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implies that j(~x, i) = j(~y, i) = j(~z, i) (see (9.12)) so we finally have

1
2
Pe(~y) +

1
2
Pe(~z) =

1
2
(
1−

∑
i∈I

pc(oi|aj(~y,i))yj(~y,i) + 1−
∑
i∈I

pc(oi|aj(~z,i))zj(~z,i)
)

= 1−
∑
i∈I

pc(oi|aj(~x,i))(1
2
yj(~x,i) +

1
2
zj(~x,i))

= Pe(~x)

Applying Proposition 9.2.7 completes the proof.

We now show that both characterizations give the same systems of equa-
tions, that is S(C) = T(C).
Proposition 9.3.7. Consider a system of inequalities of the form given in
Definition 9.3.1. Then, the equational part has a unique solution if and only if
the system is generated by a tree of G(C).

Proof. if) Assume that the system is generated by a tree of G(C). Consider
the variable corresponding to the root, say x1. Express its children x2,
. . . , xk in terms of x1. That is to say that, if the equation is ax1 = bx2,
then we express x2 as a/bx1. At the next step, we express the children of
x2 in terms of x2 an hence in terms of x1, . . . etc. Finally, we replace all
x′is by their expressions in terms of x1 in the equation

∑
i xi = 1. This

has exactly one solution.

only if) Assume by contradiction that the system is not generated by a tree.
Then we we can divide the variables in at least two equivalence classes
with respect to the equivalence relation ≈ defined in the proof of Theo-
rem 9.3.6, and we can define the same ~y defined a few paragraphs later.
This ~y is a different solution of the same system (also for the inequalities).

The advantage of Definition 9.3.5 is that it constructs directly solvable sys-
tems, in contrast to Definition 9.3.1 which would oblige us to solve all systems
of the given form and keep only the solvable ones. We finally give the complex-
ity of computing the corner points of Pe using the tree characterization, which
involves counting the number of trees of G(C).
Proposition 9.3.8. Let C = (A,O, pc) be a channel and let n = |A|,m =
|O|. Computing the set of corner points of Pe for C can be performed in
O(n(nm)n−1) time.

Proof. To compute the set of corner points of Pe we need to solve all the
systems of inequalities in T(C). Each of those is produced by a tree of G(C).
In the worst case, the matrix of the channel is non-zero everywhere, in which
case G(C) is the complete multigraph Km

n of n vertices, each pair of which is
connected by exactly m edges. Let K1

n be the complete graph of n vertices
(without multiple edges). Cayley’s formula ([Cay89]) gives its number σ(K1

n)
of spanning trees:

σ(K1
n) = nn−2 (9.15)

125



9. Hypothesis testing and the probability of error

We now want to compute the total number τ(K1
n) of trees of K1

n. To create a
tree of k vertices, we have

(
n
k

)
ways to select k out of the n vertices of K1

n and
σ(K1

k) ways to form a tree with them. Thus

τ(K1
n) =

n∑
k=1

(
n

k

)
σ(K1

k)

=
n∑
k=1

n!
k!(n− k)!

kk−2 (9.15)

=
n∑
k=1

1
(n− k)!

(k + 1) · . . . · n · kk−2

≤
n∑
k=1

1
(n− k)!

nn−k · nk−2 k + i ≤ n

= nn−2
n−1∑
l=0

1
l!

set l = n− k

≤ e · nn−2 since
∑∞
l=0

1
l! = e

thus τ(K1
n) ∈ O(nn−2). Each tree of Km

n can be produced by a tree of K1
n by

exchanging the edge between two vertices with any of the m available edges in
Km
n . Since a tree of Km

n has at most n − 1 edges, for each tree of K1
n we can

produce at most mn−1 trees of Km
n . Thus

τ(Km
n ) ≤ mn−1τ(K1

n) ∈ O(mn−1nn−2)

Finally, for each tree we have to solve the corresponding system of inequalities.
Due to the form of this system, computing the solution can be done inO(n) time
by expressing all variables xi in terms of the root of the tree, and then replace
them in the equation

∑
i xi = 1. On the other hand, for each solution we have

to verify as many as n(n− 1) inequalities, so in total the solution can be found
in O(n2) time. Thus, computing all corner points takes O(n2mn−1nn−2) =
O(n(nm)n−1) time.

Note that, to improve a bound using Proposition 9.2.5, we need to compute
the maximum ratio f(~u)/g(~u) of all corner points ~u. Thus, we need only
to compute these points, not to store them. Still, as shown in the above
proposition, the number of the systems we need to solve in the general case is
huge. However, as we will see in Section 9.4.1, in certain cases of symmetric
channel matrices the complexity can be severely reduced to even polynomial
time.

9.3.2 Examples

Example 9.3.9 (Binary hypothesis testing). The case n = 2 is particularly
simple: the systems generated by C are all those of the form

{pc(oi|a1)x1 = pc(oi|a2)x2 , x1 + x2 = 1}
plus the two systems

{x1 = 0 , x1 + x2 = 1}
{x2 = 0 , x1 + x2 = 1}

126



The corner points of the Bayes risk

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1

2

3

4

5

6

Figure 9.1: The graph of the Bayes risk for the channel in Example 9.3.9 and
various bounds for it. Curve 1 represents the probability of error if we ignore
the observables, i.e. the function f(~x) = 1 − maxj xj . Curve 2 represents
the Bayes risk Pe(~x). Curve 3 represents the Hellman-Raviv bound 1

2H(A|O).
Curve 4 represents the Santhi-Vardy bound 1 − 2−H(A|O). Finally, Curves 5
and 6 represent the improvements on 3 and 4, respectively, that we get by
applying the method induced by our Proposition 9.2.5.

These systems are always solvable, hence we have m + 2 corner points, where
we recall that m is the cardinality of O.

Let us illustrate this case with a concrete example: let C be the channel
determined by the following matrix:

o1 o2 o3

a1 1/2 1/3 1/6

a2 1/6 1/2 1/3

The systems generated by C are:

{x1 = 0 , x1 + x2 = 1}
{ 1

2x1 = 1
6x2 , x1 + x2 = 1}

{ 1
3x1 = 1

2x2 , x1 + x2 = 1}
{ 1

6x1 = 1
3x2 , x1 + x2 = 1}

{x1 = 0 , x1 + x2 = 1}
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Figure 9.2: Ternary hypothesis testing. The solid curve represents the Bayes
risk for the channel in Example 9.3.10, while the dotted curve represents the
Santhi-Vardy bound 1− 2−H(A|O).

The solutions of these systems are: (0, 1), (1/4, 3/4), (3/5, 2/5), (2/3, 1/3), and
(1, 0), respectively. The value of Pe on these points is 0, 1/4, 3/10 (maximum),
1/3, and 0 respectively, and Pe is piecewise linear between these points, i.e. it
can be generated by convex combination of these points and its value on them.
Its graph is illustrated in Figure 9.1, where x1 is represented by x and x2 by
1− x.

Example 9.3.10 (Ternary hypothesis testing). Let us consider now a channel
C with three inputs. Assume the channel has the following matrix:

o1 o2 o3

a1 2/3 1/6 1/6

a2 1/8 3/4 1/8

a3 1/10 1/10 4/5

The following is an example of a solvable system generated by C:

2
3x1 = 1

8x2

1
8x2 = 4

5x3

x1 + x2 + x3 = 1
2
3x1 ≥ 1

10x3

1
8x2 ≥ 1

6x1
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Another example is

1
6x1 = 3

4x2

x3 = 0

x1 + x2 + x3 = 1

The graph of Pe is depicted in Figure 9.2, where x3 is represented by 1 −
x1 − x2.

9.4 Application: Crowds

In this section we discuss how to compute the channel matrix for a given proto-
col using automated tools, and use it to improve the bound for the probability
of error. We illustrate our ideas on a variation of Crowds.

In this protocol, described in detail in Section 3.2.2, a user (called the ini-
tiator) wants to send a message to a web server without revealing its identity.
To achieve that, he routes the message through a crowd of users participating
in the protocol. The routing is performed using the following protocol: in the
beginning, the initiator selects randomly a user (called a forwarder), possibly
himself, and forwards the request to him. A forwarder, upon receiving a mes-
sage, performs a probabilistic choice. With probability pf (a parameter of the
protocol) he selects a new user and forwards once again the message. With
probability 1− pf he sends the message directly to the server.

It is easy to see that the initiator is strongly anonymous with respect to
the server, as all users have the same probability of being the forwarder who
finally delivers the message. However, the more interesting case is when the
attacker is one of the users of the protocol (called a corrupted user) which
uses his information to find out the identity of the initiator. A corrupted
user has more information than the server since he sees other users forwarding
the message through him. The initiator, being the in first in the path, has
greater probability of forwarding the message to the attacker than any other
user, so strong anonymity cannot hold. However, as shown in Section 6.5.1,
Crowds satisfies probable innocence, under certain conditions on the number
of corrupted users.

In our analysis, we consider two network topologies. In the first, used
in the original presentation of Crowds, all users are assumed to be able to
communicate with any other user, in other words the network graph is a clique.
In this case, the channel matrix is symmetric and easy to compute. Moreover,
due to the symmetry of the matrix, the corner points of the probability of error
are fewer in number and have a simple form.

However, having a clique network is not always feasible in practice, as it is
the case for example in distributed systems. As the task of computing the ma-
trix becomes much harder in a non-clique network, we employ model-checking
tools to perform it automatically. The set of corner points, being finite, can
also be computed automatically by solving the corresponding systems of in-
equalities.
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9. Hypothesis testing and the probability of error

9.4.1 Crowds in a clique network

We consider an instance of Crowds with m users, of which n are honest and
c = m− n are corrupted. To construct the matrix of the protocol, we start by
identifying the set of anonymous facts, which depends on what the system is
trying to hide. In protocols where one user performs an action of interest (like
initiating a message in our example) and we want to protect his identity, the
set A would be the set of the users of the protocol. Note that the corrupted
users should not be included in this set, since we cannot expect the attacker’s
own actions to be hidden from him. So in our case we have A = {u1, . . . un}
where ui means that user i is the initiator.

The set of observables should also be defined, based on the visible actions
of the protocol and on the various assumptions made about the attacker. In
Crowds we assume that the attacker does not have access to the entire network
(such an attacker would be too powerful for this protocol) but only to the
messages that pass through a corrupted user. Each time a user i forwards the
message to a corrupted user we say that he is detected which corresponds to an
observable action in the protocol. Along the lines of other studies of Crowds
(e.g. [Shm04]) we suppose that an attacker will not forward a message himself,
since by doing so he would not gain more information. So at each execution of
the protocol there is at most one detected user and we have O = {d1, . . . , dn}
where dj means that user j was detected.

Now we need to compute the probabilities pc(dj |ui) for all 1 ≤ i, j ≤ n.
We first observe some symmetries of the protocol. First, the probability of
observing the initiator is the same, independently of who is the initiator. We
denote this probability by α. Moreover, the probability of detecting a user other
than the initiator is the same for all other users. We denote this probability
by β. It can be shown ([RR98]) that

α = c
1− n−1

m pf

m− npf β = α− c

m

Note that there is also the possibility of not observing any user, if the message
arrives to a server without passing through any corrupted user. To compute
the matrix, we condition on the event that some user was observed, which is
reasonable since otherwise anonymity is not an issue. Thus the conditional
probabilities of the matrix are:

pc(dj |ui) =

{
α
s if i = j
β
s otherwise

where s = α + (n − 1)β. The matrix for n = 20, c = 5, pf = 0.7 is shown in
Figure 9.3.

An advantage of the symmetry is that the corner points of the probability
of error for such a matrix have a simple form.

Proposition 9.4.1. Let (A,O, pc) be a channel. Assume that all values of the
matrix pc(·|·) are either α or β, with α, β > 0, and that there is at most one α
per column. Then all solutions to the systems of Definition 9.3.5 have at most
two distinct non-zero elements, equal to x and α

βx for some x ∈ (0, 1].
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d1 d2 . . . d20

u1 0.468 0.028 . . . 0.028

u2 0.028 0.468 . . . 0.028
...

...
...

. . .
...

u20 0.028 0.028 . . . 0.468

Figure 9.3: The channel matrix of Crowds for n = 20, c = 5, pf = 0.7. The
events ui, dj mean that user i is the initiator and user j was detected respec-
tively.

Proof. Since all values of the matrix are either α or β, the equations of all
the systems in Definition 9.3.5 are of the form xi = xj or α · xi = β · xj .3
Assume that a solution of such a system has three distinct non-zero elements
x1 > x2 > x3 > 0. We consider the following two cases:

1. x2, x3 are related to each other by an equation. Since x2 > x3 this
equation can only be α·x2 = β·x3, where pc(o|a2) = α for some observable
o. Since there is at most one α per column we have pc(o|a1) = β and
thus pc(o|a1)x1 = β x1 > β x3 = αx2 = pc(o|a2)x2 which violates the
inequalities of Definition 9.3.5.

2. x2, x3 are not related to each other. Thus they must be related to x1 by
two equations (assuming α > β) β · x1 = α · x2 and β · x1 = α · x3. This
implies that x2 = x3 which is a contradiction.

Similarly for more than three non-zero elements.

The above proposition allows us to efficiently compute the scaling factor of
Proposition 9.2.5 to improve the Santhi-Vardy bound.

Proposition 9.4.2. Let (A,O, pc) be a channel with n = |A|. Assume that
all columns and all rows of the matrix pc(·|·) have exactly one element equal to
α > 0 and all others equal to β > 0. Then the scaling factor of Proposition 9.2.5
can be computed in O(n2) time.

Proof. By Proposition 9.4.1, all corner points of Pe have two distinct non-
zero elements x and α

βx. If we fix the number k1 of elements equal to x and
the number k2 of elements equal to α

βx then x can be uniquely computed in
constant time. Due to the symmetry of the matrix, Pe as well as the Santhi-
Vardy bound will have the same value for all corner points with the same k1, k2.
So it is sufficient to compute the ratio in only one of them. Then by varying
k1, k2, we can compute the best ratio without even computing all the corner
points. Note that there are O(n2) possible values of k1, k2 and since we need to
compute one point for each of them, the total computation can be performed
in O(n2) time.

3Note that by construction of G(C) the coefficients of all equations are non-zero, so in
our case either α or β.
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Figure 9.4: The improvement (represented by the scaling factor) with respect
to the Santhi-Vardy bound for various instances of Crowds.

We can now apply the algorithm described above to compute the scaling
factor co ≤ 1. Multiplying the Santhi-Vardy bound by co will give us an im-
proved bound for the probability of error. The results are shown in Figure 9.4.
We plot the obtained scaling factor while varying the number of honest users,
for c = 5 and for various values of the parameter pf . A lower scaling factor
means a bigger improvement with respect to the Santhi-Vardy bound. We re-
mind that we probability of error, in this case, gives the probability that the
attacker “guesses” the wrong sender. The higher it is, the more secure is the
protocol. It is worth noting that the scaling factor increases when the number of
honest users increases or when the probability of forwarding increases. In other
words, the improvement is better when the probability of error is smaller (and
the system is less anonymous). When increasing the number of users (without
increasing the number c of corrupted ones), the protocol offers more anonymity
and the capacity increases. In this case the Santhi-Vardy bound becomes closer
to the corner points of Pe and there is little room for improvement.

9.4.2 Crowds in a grid network

We now consider a grid-shaped network as shown in Figure 9.5. In this network
there is a total of nine users, each of whom can only communicate with the four
that are adjacent to him. We assume that the network “wraps” at the edges,
so user 1 can communicate with both user 3 and user 7. Also, we assume that
the only corrupted user is user 5.

In this example we have relaxed the assumption of a clique network, show-
ing that a model-checking approach can be used to analyze more complicated
network topologies (but of course is limited to specific instances). Moreover,
the lack of homogeneity in this network creates a situation where the maximum
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Figure 9.5: An instance of Crowds with nine users in a grid network. User 5 is
the only corrupted one.

d2 d4 d6 d8

u1 0.33 0.33 0.17 0.17

u3 0.33 0.17 0.33 0.17

u7 0.17 0.33 0.17 0.33

u9 0.17 0.17 0.33 0.33

u2 0.68 0.07 0.07 0.17

u4 0.07 0.68 0.17 0.07

u6 0.07 0.17 0.68 0.07

u8 0.17 0.07 0.07 0.68
Figure 9.6: The channel matrix of the examined instance of Crowds. The sym-
bols ui, dj mean that user i is the initiator and user j was detected respectively.

probability of error is given by a non-uniform input distribution. This empha-
sizes the importance of abstracting from the input distribution: assuming a
uniform one would be not justified in this example.

Similarly to the previous example, the set of anonymous events will be
A = {u1, u2, u3, u4, u6, u7, u8, u9} where ui means that user i is the initiator.
For the observable events we notice that only the users 2, 4, 6 and 8 can
communicate with the corrupted user. Thus we have O = {d2, d4, d6, d8} where
dj means that user j was detected.

To compute the channel’s matrix, we have modeled Crowds in the language
of the PRISM model-checker ([KNP04]), which is essentially a formalism to
describe Markov Decision Processes. PRISM can compute the probability of
reaching a specific state starting from a given one. Thus, each conditional
probability pc(dj |ui) is computed as the probability of reaching a state where
the attacker has detected user j, starting from the state where i is the initiator.
Similarly to the previous example, we compute all probabilities conditioned on
the fact that some observation was made, which corresponds to normalizing
the rows of the matrix.

In Figure 9.6 the channel matrix is displayed for the examined Crowds
instance, computed using probability of forwarding pf = 0.8. We have split
the users in two groups, the ones who cannot communicate directly with the
corrupted user, and the ones who can. When a user of the first group, say user
1, is the initiator, there is a higher probability of detecting the users that are
adjacent to him (users 2 and 4) than the other two (users 6 and 8) since the
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Figure 9.7: The lower curve is the probability of error in the examined instance
of Crowds. The upper two are the Santhi and Vardy’s bound and its improved
version.

message needs two steps to arrive to the latters. So pc(d2|u1) = pc(d4|u1) =
0.33 are greater than pc(d6|u1) = pc(d8|u1) = 0.17. In the second group users
have direct communication to the attacker, so when user 2 is the initiator,
the probability pc(d2|u2) of detecting him is high. From the remaining three
observables d8 has higher probability since user 8 can be reached from user 2
in one step, while users 4 and 6 need two steps. Inside each group the rows are
symmetric since the users behave similarly. However between the groups the
rows are different which is caused by the different connectivity to the corrupted
user 5.

We can now compute the probability of error for this instance of Crowds,
which is displayed in the lower curve of Figure 9.7. Since we have eight users,
to plot this function we have to map it to the three dimensions. We do this
by considering the users 1, 3, 7, 9 to have the same probability x1, the users
2, 8 to have the same probability x2 and the users 4, 6 to have the same
probability 1− x1 − x2. Then we plot Pe as a function of x1, x2 in the ranges
0 ≤ x1 ≤ 1/4, 0 ≤ x2 ≤ 1/2. Note that when x1 = x2 = 0 there are still
two users (4, 6) among whom the probability is distributed, so Pe is not 0.
The upper curve of Figure 9.7 shows the Santhi and Vardy’s bound on the
probability of error. Since all the rows of the matrix are different the bound is
not tight, as illustrated.

We can obtain a better bound by applying Proposition 9.2.5. The set of cor-
ner points, characterized by Theorem 9.3.2, is finite and can be automatically
constructed by solving the corresponding systems of inequalities. A prototype
tool that computes the set of corner points for an arbitrary matrix is avail-
able at [Cha07]. After finding the corner points, we compute the scaling factor
co = maxu Pe(~u)/h(~u), where h is the original bound, and take co · h as the
improved bound. In our example we found co = 0.925 which was given for the
corner point ~u = (0.17, 0.17, 0.17, 0.17, 0.08, 0.08, 0.08, 0.08).
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9.5 Protocol composition

In this section we consider the case where a protocol is executed multiple times
by the same user, either forced by the attacker himself or by some external
factor. For instance, in Crowds users send messages along randomly selected
routes. For various reasons this path might become unavailable, so the user
will need to create an new one, thus re-executing the protocol. If the attacker
is part of the path, he could also cause it to fail by stop forwarding messages,
thus obliging the sender to recreate it (unless measures are taken to prevent
this, as it is done in Crowds).

From the point of view of hypothesis testing, the above scenario corresponds
to performing the experiment multiple times while the same hypothesis holds
through the repetition. We assume that the the outcomes of the repeated
experiments are independent. This corresponds to assuming that the proto-
col is memoryless, i.e. each time it is reactivated, it works according to the
same probability distribution, independently from what happened in previous
sessions.

As in the previous sections, we consider the Bayesian approach, which re-
quires the knowledge of the matrix of the protocol and of the a priori distri-
bution of the hypotheses, and tries to infer the a posteriori probability of the
actual hypothesis w.r.t. a given sequence of observations. As argued in previ-
ous chapters, the first assumption (knowledge of the matrix of the protocol) is
usually granted in an anonymity setting, since the way the protocol works is
public. The second assumption may look too strong, since the attacker does
not usually know the distribution of the anonymous events. However, in this
section we will show that, under certain conditions, the a priori distribution
becomes less and less relevant with the repetition of the experiment, and, at
the limit, it does not matter at all.

Let S = (A,O, pc) be an anonymity system. The situation in which the
protocol is re-executed n times with the same event a as input corresponds
to the n-repetition Sn of S, defined in Section 4.2. The observables in Sn

are sequences ~o = (o1, . . . , on) of observables of S and, since we consider the
repetitions to be independent, the conditional probabilities for Sn will be given
by4

pc(~o|a) =
n∏
i=1

pc(oi|a) (9.16)

As discussed in Section 9.1 the decision function adopted by the adversary to
infer the anonymous action from the sequence of observables will be a function
of the form fn : On → A. Also let Let Efn

: A → 2O
n

be the error region
of fn and let ηn : A → [0, 1] be the function that associates to each a ∈ A
the probability of inferring the wrong input event on the basis of fn, namely
ηn(a) =

∑
~o∈Efn (a) p(~o|a). Then the probability of error of fn will be the

expected value of ηn(a):

Pfn
=
∑
a∈A

p(a)ηn(a)

4With a slight abuse of notations we denote by pc the probability matrix of both S and
Sn. It will be clear from the context to which we refer to.
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The MAP rule and the notion of MAP decision function can be extended
to the case of protocol repetition in the obvious way. Namely a MAP decision
function in the context of protocol repetition is a function fn such that for each
~o ∈ On and a, a′ ∈ A

fn(~o) = a⇒ p(~o|a)p(a) ≥ p(~o|a′)p(a′)

Also in the case of protocol repetition the MAP rule gives the best possible
result, namely if fn is a MAP decision function then Pfn

≤ Phn
for any other

decision function hn.

9.5.1 Independence from the input distribution

In this section we will see that under a certain condition on the matrix of
the protocol, and for n large enough, the knowledge of the input distribution
becomes unnecessary for hypothesis testing, in the sense that the MAP decision
functions can be approximated by other decision functions that do not depend
on the distribution on A.

The following definition establishes the condition on the matrix.

Definition 9.5.1. Given an anonymity system (A,O, pc), we say that the
system is determinate iff all rows of the matrix pc are pairwise different, i.e.
the probability distributions pc(·|a), pc(·|a′) are different for each pair a, a′ with
a 6= a′.

Next proposition shows that if a protocol is determinate, then it can be
approximated by a decision function which compares only the elements along
the column corresponding to the observed event, without considering the input
probabilities. By “approximated” we mean that as n increases, the probability
of the subset of On in which the two functions give the same result converges
to 1.

This property is based on a remark in [CT91], page 316, stating that, for
n large enough, in the fraction p(~o|a)p(a)/p(~o|a′)p(a′) the factor p(a)/p(a′) is
dominated by the factor p(~o|a)/p(~o|a′) (provided, one needs to add, that the
latter is different from 1). In [CT91] they give also a sketch of the proof of this
remark; the proof of our proposition is is a development of that sketch.

Proposition 9.5.2. Given a determinate anonymity system (A,O, pc), for
any distribution pA on A, any MAP decision functions fn and any decision
function gn : On → A such that

gn(~o) = a ⇒ pc(~o|a) ≥ pc(~o|a′) ∀~o ∈ On∀a, a′ ∈ A

we have that gn approximates fn. Namely, for any ε > 0, there exists n such
that the probability of the set {~o ∈ On | fn(~o) 6= gn(~o)} is smaller than ε.

Proof. For any value o ∈ O, and for any sequence of observable outcomes
~o ∈ On, let n(o, ~o) denote the number of o’s that occur in ~o. Let a be the actual
input. Observe that, by the strong law of large numbers ([CT91]), for any δ > 0
the probability of the set {~o ∈ On | ∀o ∈ O |n(o, ~o)/n − p(o|a)| < δ} goes to 1
as n goes to ∞. We show that, as a consequence of the above observation, the
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probability of the set S = {~o ∈ On | ∀a′ 6= a p(~o|a)p(a) > p(~o|a′)p(a′)} goes to
1 as n goes to ∞. In fact, p(~o|a)p(a) > p(~o|a′)p(a′) iff

1
n

log
p(~o|a)p(a)
p(~o|a′)p(a′) > 0

Then we have

1
n

log
p(~o|a)
p(~o|a′) =

1
n

log
n∏
i=1

p(oi|a)
p(oi|a′) (by (9.16))

=
1
n

n∑
i=1

log
p(oi|a)
p(oi|a′)

=
1
n

∑
o∈O

n(o, ~o)log
p(o|a)
p(o|a′) (by definition of n(o, ~o))

−→
n→∞

∑
o∈O

p(o|a)log
p(o|a)
p(o|a′) (strong law of large numb.)

= D(p(·|a) ‖ p(·|a′)) (Kullback–Leibler distance)

so

1
n

log
p(~o|a)p(a)
p(~o|a′)p(a′) =

1
n

log
p(~o|a)
p(~o|a′) +

1
n

log
p(a)
p(a′)

−→
n→∞

D(p(·|a) ‖ p(·|a′)) (since
1
n

log
p(a)
p(a′)

−→
n→∞

0)

> 0 (by determinacy)

Given a MAP decision function fn, consider now the set S′ = {~o ∈ On | fn(~o) =
a}. Because of the definition of fn, we have that S ⊆ S′. Hence also the
probability of the set S′ goes to 1 as n goes to ∞. Following a similar rea-
soning, we can prove that for any gn satisfying the premises of proposition,
the probability of the set {~o ∈ On | gn(~o) = a} goes to 1 as n goes to ∞.
We can therefore conclude that the same holds for the probability of the set
{~o ∈ On | gn(~o) = fn(~o)}.

The conditional probability p(o|a) (resp. p(~o|a)) is called likelihood of a
given o (resp. ~o). The criterion for the definition of gn used in Proposition
9.5.2 is to choose the a which maximizes the likelihood of o, and it is known
in literature as the Maximum Likelihood rule. In the following we will call
Maximum Likelihood (ML) decision functions those functions that, like gn,
satisfy the ML criterion. The Maximum Likelihood principle is very popular
in statistic, its advantage over the Bayesian approach being that it does not
require any knowledge of the a priori probability on A.

9.5.2 Bounds on the probability of error

In this section we discuss some particular cases of matrices and the correspond-
ing bounds on the probability of error associated to the MAP and ML decision
functions. We also discuss the probability of error in relation to various bounds
on the capacity of the corresponding channel.
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9. Hypothesis testing and the probability of error

Determinate matrix We start with the bad case (from the anonymity point
of view), which is when the matrix is determinate:

Proposition 9.5.3. Given a determinate anonymity system (A,O, pc), for
any distribution pA on A and for any ε > 0, there exists n such that the
property

gn(~o) = a ⇒ pc(~o|a) ≥ pc(~o|a′) ∀a′ ∈ A
determines a unique decision function gn on a set of probability greater than
1− ε, and the probability of error Pgn is smaller than ε.

Proof. Given ~o ∈ On, define gn(~o) = a iff a is the value of A for which p(~o|a)
is greatest. By following the same lines as in the proof of Proposition 9.5.2, we
have that the set {~o ∈ On | ∀a′ ∈ A p(~o|a) > p(~o|a′)} has probability greater
than 1− ε for n sufficiently large. Consequently, the choice of a is unique.

As for Pgn , we observe that for n sufficiently large the set Egn = {~o ∈
On | ∃a′ ∈ A p(~o|a) ≤ p(~o|a′)} has probability smaller than ε. Hence ηn(a) =∑
~o∈Egn (a) p(~o|a) < ε and Pgn

=
∑
a∈A p(a)ηn(a) < ε.

Proposition 9.5.3 and its proof tell us that, in case of determinate matrices,
there is essentially only one decision function, and its value is determined, for
n sufficiently large, by the a for which p(~o|a) is greatest.

One extreme case of determinate matrix is when the capacity is 0.

Maximum capacity If the channel has no noise, which means that for each
observable ~o there exists at most one a such that pc(~n|a) 6= 0, then the proba-
bility of error for an ML function is 0 for every input distribution. In fact

Pgn
= 1−∑~o maxj p(~o|aj)xj
= 1−∑j

∑
~o p(~o|aj)xj

= 1−∑j xj = 0

Hence in the case of capacity 0 the error is 0 for every n. In particular, it is
already 0 after the first observation (i.e. we are already certain about which
hypothesis holds) and we don’t need to repeat the protocol.

The same holds for a MAP function, the assumption that pc(~n|a) 6= 0 for
at most one a implies that maxj(p(~o|aj)xj) = maxj p(~o|aj)xj .

Identical rows Consider now the case in which determinacy does not hold,
i.e. when there are at least two identical rows in the matrix, in correspondence,
say, of a1 and a2. In such case, for the sequences ~o ∈ On such that pc(~o|a1) (or
equivalently pc(~o|a2)) is maximal, the value of a ML function gn is not uniquely
determined, because we could choose either a1 or a2. Hence we have more than
one ML decision function.

More in general, if there are k identical rows a1, a2, . . . , ak, the ML criterion
gives k different possibilities each time we get an observable ~o ∈ On for which
pc(~o|a1) is maximal. Intuitively this is a situation which may induce an error
which is difficult to get rid of, even by repeating the protocol many times.

The situation is different and if we know the a priori distribution and we
use a MAP function fn. In this case we have to maximize p(a)p(~o|a) and even
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in case of identical rows, the a priori knowledge can help to make a sensible
guess about the most likely a.

Both in the case of the ML and of the MAP functions, however, we shown
that the probability of error is bound from below by an expression that depends
on the probabilities of a1, a2, . . . , ak only. In fact, we can show that this is
the case for any decision function, whatever criterion they use to select the
hypothesis.

Proposition 9.5.4. If the matrix has some identical rows corresponding to
a1, a2, . . . , ak then for any decision function hn we have that Phn ≥ min1≤i≤k{p(ai)}

Proof. Assume that p(a`) = min1≤i≤k{p(ai)}. We have:

Phn
=
∑
a∈A

p(a)ηn(a)

≥
∑

1≤i≤k

p(ai)ηn(ai)

≥
∑

1≤i≤k

p(a`)ηn(ai) (p(a`) = min1≤i≤k{p(ai)})

=
∑

1≤i≤k

p(a`)
∑

hn(~o) 6=ai

p(~o|ai)

=
∑

1≤i≤k

p(a`)
∑

hn(~o) 6=ai

p(~o|a`) (p(~o|ai) = p(~o|a`))

= p(a`)
∑

1≤i≤k

∑
hn(~o)6=ai

p(~o|a`)

= p(a`)
∑

1≤i≤k

(1−
∑

hn(~o)=ai

p(~o|a`) )

≥ (k − 1)p(a`) (
∑

1≤i≤k
∑
hn(~o)=ai

p(~o|a`) ≤ 1)

Note that the expression (k−1)p(a`) does not depend on n. Assuming that
the ai’s have positive probability, from the above proposition we derive that
the probability of error is bound from below by a positive constant. Hence the
probability of error does not converge to 0.

Corollary 9.5.5. If there exist a1, a2, . . . , ak with positive probability, k ≥ 2,
and whose corresponding rows in the matrix are identical, then for any decision
function hn the probability of error is bound from below by a positive constant.

Remark 9.5.6. In Proposition 9.5.4 we are allowed to consider any subset of
identical rows. In general it is not necessarily the case that a larger subset gives
a better bound. In fact, as the subset increases, k increases too, but the minimal
p(ai) may decrease. To find the best bound in general one has to consider all
the possible subsets of identical rows.
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9. Hypothesis testing and the probability of error

Capacity 0 Capacity 0 is the extreme case of identical rows: it corresponds,
in fact, to the situation in which all the rows of the matrix are identical. This
is, of course, the optimal case with respect to anonymity. All the rows are the
same, consequently the observations are of no use for the attacker to infer the
anonymous event, i.e. to define the “right” gn(~o), since all pc(~o|a) are maximal.

The probability of error of any decision function is bound from below by
(|A| − 1) min ip(ai). Note that by Remark 9.5.6 we may get better bounds by
considering subsets of the rows instead than all of them.

Conditional capacity 0 From the point of view of testing the anonymous
events we note the following: given a ~o ∈ On, there exists exactly one group ri
of a’s such that p(~o|a) > 0, and p(~o|a1) = p(~o|a2) for all a1, a2 in ri. Hence the
attacker knows that the right anonymous event is an a in ri, but he does not
know exactly which one. In other words, the observation gives to the attacker
complete knowledge about the group, but tells him nothing about the exact
event a in the group, as expected.

For each r ∈ R we have that the probability of error is bounded by (|Ar| −
1) mini∈r p(ai).

Probable innocence Concerning the testing of the anonymous events, it is
interesting to note that, if the attacker has the possibility of repeating the test
with the same input an arbitrary number of times, then probable innocence
does not give any guarantee. In fact, Definition 6.2.2 does not prevent the func-
tion p(~o|·) from having a maximum with probability close to 1, for a sufficiently
long sequence of observables ~o. So the probability of error corresponding to
gn would converge to 0. A similar reasoning can be done for fn. The only
exception is when two (or more) rows a1, a2 are equal and correspond to max-
imals. Imposing this condition for all anonymous actions and all the rows is
equivalent to requiring strong anonymity. In conclusion, probable innocence
maintains an upper bound on anonymity through protocol repetition only if
the system is strongly anonymous. This result is in accordance with the one
in Chapter 6.

9.6 Related work

In the field of anonymity and privacy, the idea of using the techniques and
concepts of hypothesis testing to reason about the capabilities of an adversary
seems to be relatively new. The only other works we are aware of are [Mau00,
PHW04, PHW05]. However, those works do not use the setting of hypothesis
testing in the information theoretic framework, like we do, so the connection
with our work is quite loose.
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Adding Nondeterminism
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Ten

The problem of the scheduler

Up to now we have modeled anonymity protocols in a purely probabilistic frame-
work, and we described their behavior by assigning probability measures to the
observable events. This framework allowed us to fruitfully analyze protocols
like the Dining Cryptographers or Crowds and it can be used for a variety of
other protocols. However, security protocols often give rise to concurrent and
interactive activities that can be best modeled by nondeterminism. Examples
of such behavior are the order in which messages arrive in a network or re-
sources that are available to a limited number of users but without being able
to predict which ones will manage to access them. Such behavior depends on
factors that are either too complicated to describe explicitly, or even totally
unknown, in both cases they are best modeled by nondeterminism.

Thus it is convenient to specify such protocols using a formalism which is
able to represent both probabilistic and nondeterministic behavior. Formalisms
of this kind have been explored in both Automata Theory [Var85, HJ89, YL92,
Seg95, SL95] and in Process Algebra [HJ90, BS01, And02, MOW04, PH05,
DPP05]. See also [SV04, JLY01] for comparative and more inclusive overviews.

Due to the presence of nondeterminism, in such formalisms it is not possible
to define the probability of events in absolute terms. We need first to decide
how each nondeterministic choice during the execution will be resolved. This
decision function is called scheduler. Once the scheduler is fixed, the behavior
of the system (relatively to the given scheduler) becomes fully probabilistic and
a probability measure can be defined following standard techniques.

It has been observed by several researchers that in security the notion of
scheduler needs to be restricted, or otherwise any secret choice of the protocol
could be revealed by making the choice of the scheduler depend on it. This
issue was for instance one of the main topics of discussion at the panel of CSFW
2006. We illustrate it here with an example on anonymity. We use the CCSp
calculus, introduced in Section 2.5, where the construct P +p Q represents a
process that evolves into P with probability p and into Q with probability 1−p.

The system Sys consists of a receiver R and two senders S, T communicating
via private channels a, b respectively. Which of the two senders is successful is
decided probabilistically by R. After reception, R sends a signal ok.

R
∆= a.ok.0 +0.5 b.ok.0
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10. The problem of the scheduler

S
∆= ā.0

T
∆= b̄.0

Sys ∆= (νa)(νb)(R | S | T )

The signal ok is not private, but since it is the same in both cases, in principle
an external observer should not be able to infer from it the identity of the
sender (S or T ). So the system should be anonymous. However, consider a
team of two attackers A and B defined as

A
∆= ok.s̄.0 B

∆= ok.t̄.0

and consider the parallel composition Sys | A | B. We have that, under certain
schedulers, the system is no longer anonymous. More precisely, a scheduler
could leak the identity of the sender via the channels s, t by forcing R to
synchronize with A on ok if R has chosen the first alternative, and with B
otherwise. This is because in general a scheduler can see the whole history of the
computation, in particular the random choices, even those which are supposed
to be private. Note that the visibility of the synchronization channels to the
scheduler is not crucial for this example: we would have the same problem, for
instance, if S, T were both defined as ā.0, R as a.ok.0, and Sys as (νa)((S +0.5

T ) | R).
The above example demonstrates that, with the standard definition of

scheduler, it is not possible to represent a truly private random choice (or
a truly private nondeterministic choice, for the matter) with the current prob-
abilistic process calculi. This is a clear shortcoming when we want to use these
formalisms for the specification and verification of security protocols.

There is another issue related to verification: a private choice has certain
algebraic properties that would be useful in proving equivalences between pro-
cesses. In fact, if the outcome of a choice remains private, then it should not
matter at which point of the execution the process makes such choice, until it
actually uses it. Consider for instance A and B defined as follows

A
∆= a(x).([x = 0]ok

+0.5

[x = 1]ok)

B
∆=a(x).[x = 0]ok

+0.5

a(x).[x = 1]ok

Process A receives a value and then decides randomly whether it will accept
the value 0 or 1. Process B does exactly the same thing except that the choice
is performed before the reception of the value. If the random choices in A
and B are private, intuitively we should have that A and B are equivalent
(A ≈ B). This is because it should not matter whether the choice is done
before or after receiving a message, as long as the outcome of the choice is
completely invisible to any other process or observer. However, consider the
parallel context C = a0 | a1. Under any scheduler A has probability at most
1/2 to perform ok. With B, on the other hand, the scheduler can choose
between a0 and a1 based on the outcome of the probabilistic choice, thus
making the maximum probability of ok equal to 1. The execution trees of
A | C and B | C are shown in Figure 10.1.

In general when +p represents a private choice we would like to have

C[P +p Q] ≈ C[τ.P ] +p C[τ.Q] (10.1)
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A | ā0 | ā1
([0 = 0]ok +0.5 [0 = 1]ok) | ā1 ok

0
([1 = 0]ok +0.5 [1 = 1]ok) | ā0 0

ok

B | ā0 | ā1
a(x).[x = 0]ok | ā0 | ā1 ok

0
a(x).[x = 1]ok | ā0 | ā1 0

ok

Figure 10.1: Execution trees for A | C and B | C

for all processes P,Q and all contexts C not containing replication (or recur-
sion). In the case of replication the above cannot hold since !(P +p Q) makes
available each time the choice between P and Q, while (!τ.P )+p (!τ.Q) chooses
once and for all which of the two (P or Q) should be replicated. Similarly for
recursion. The reason why we need a τ is explained in Section 10.3.

The algebraic property (10.1) expresses in an abstract way the privacy of the
probabilistic choice. Moreover, this property is also useful for the verification
of security properties. In fact, in the next chapter we use this property to prove
the correctness of a fair exchange protocol. In principle (10.1) should be useful
for any kind of verification in the process algebra style.

We propose a process-algebraic approach to the problem of hiding the out-
come of random choices. Our framework is based on the CCSp calculus, which
is an extension of CCS with an internal probabilistic choice construct1. This
calculus is a variant of the one studied in [DPP05], the main differences being
that we use replication instead than recursion, and we lift some restrictions
that were imposed in [DPP05] to obtain a complete axiomatization. The se-
mantics of CCSp is given in terms of Segala’s simple probabilistic automata,
which were introduced in section 2.4.

In order to limit the power of the scheduler, we extend CCSp with terms
representing explicitly the notion of scheduler. The latter interact with the
original processes via a labeling system. This will allow to specify at the syn-
tactic level (by a suitable labeling) which choices should be visible to schedulers,
and which ones should not.

Contribution The main contributions of this chapter are the following:

• A process calculus CCSσ in which the scheduler is represented as a pro-
cess, and whose power can therefore be controlled at the syntactic level.

• The adaptation of the standard notions of probabilistic testing preorders
to CCSσ, and the “sanity check” that they are still precongruences with
respect to all the operators except the nondeterministic sum. For the
latter we have the problem that P and τ.P are must equivalent, but
Q + P and Q + τ.P are not. This is typical for the CCS +: usually it
does not preserve weak equivalences.

1We actually consider a variant of CCS where recursion is replaced by replication. The
two languages are not equivalent, but we believe that the issues regarding the differences
between replication and recursion are orthogonal to the topics investigated in this chapter.
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• The proof that, under suitable conditions on the labelings of C, τ.P
and τ.Q, CCSσ satisfies the property expressed by (10.1), where ≈ is
probabilistic testing equivalence.

• An application of CCSσ to an extended anonymity example (the Dining
Cryptographers Protocol, DCP). We also briefly outline how to extend
CCSσ so to allow the definition of private nondeterministic choice, and
we apply it to the DCP with nondeterministic master. To our knowledge
this is the first formal treatment of the scheduling problem in DCP and
the first formalization of a nondeterministic master for the (probabilistic)
DCP.

Plan of the chapter In the next section we define a preliminary version of
the language CCSσ and of the corresponding notion of scheduler. In Section
10.2 we compare our notion of scheduler with the more standard “semantic”
notion, and we improve the definition of CCSσ so to retrieve the full expressive
power of the semantic schedulers. In Section 10.3 we study the probabilistic
testing preorders, their compositionality properties, and the conditions under
which (10.1) holds. Section 10.4 presents an application to security. Section
10.5 discusses some related work.

10.1 A variant of CCS with explicit scheduler

In this section we present a variant of CCS in which the scheduler is explicit,
in the sense that it has a specific syntax and its behavior is defined by the
operational semantics of the calculus. We will refer to this calculus as CCSσ.
Processes in CCSσ contain labels that allow us to refer to a particular sub-
process. A scheduler also behaves like a process, using however a different
and much simpler syntax, and its purpose is to guide the execution of the
main process using the labels that the latter provides. A complete process is
a process running in parallel with a scheduler, and we will formally describe
their interaction by defining an operational semantics for complete processes.

10.1.1 Syntax

Let a range over a countable set of channel names and l over a countable set
of atomic labels. The syntax of CCSσ, shown in Figure 10.2, is the same as
the one of CCSp except for the presence of labels. These are used to select
the subprocess which “performs” a transition. Since only the operators with
an initial rule can originate a transition, we only need to assign labels to the
prefix and to the probabilistic sum. For reasons explained later, we also put
labels on 0, even though this is not required for scheduling transitions. We use
labels of the form ls where l is an atomic label and the index s is a finite string
of 0 and 1, possibly empty2. Indexes are used to avoid multiple copies of the
same label in case of replication, which occurs dynamically due to the bang
operator. As explained in the semantics, each time a process is replicated we
relabel it using appropriate indexes.

2For simplicity we will write l for lε.
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I ::= 0 I | 1 I | ε label indexes

L ::= lI labels

P,Q ::= processes

L:α.P prefix

| P | Q parallel

| P +Q nondeterm. choice

| L:
∑
i piPi internal prob. choice

| (νa)P restriction

| !P replication

| L:0 nil

S, T ::= scheduler

L.S schedule single action

| (L,L).S synchronization

| if L label test

then S

else S

| 0 nil

CP ::= P ‖ S complete process

Figure 10.2: The syntax of the core CCSσ

A scheduler selects a sub-process for execution on the basis of its label, so
we use l.S to represent a scheduler that selects the process with label l and
continues as S. In the case of synchronization we need to select two processes
simultaneously, hence we need a scheduler of the form (l1, l2).S. Using if-then-
else the scheduler can test whether a label is available in the process (in the
top-level) and act accordingly. A complete process is a process put in parallel
with a scheduler, for example l1 :a.l2 :b ‖ l1.l2. Note that for processes with an
infinite execution path we need schedulers of infinite length. So, to be more
formal, we should define schedulers as infinite trees with 3 types of internal
nodes, instead of using a BNF grammar.

10.1.2 Semantics

The operational semantics of the CCSσ-calculus is given in terms of probabilis-
tic automata defined inductively on the basis of the syntax, according to the
rules shown in Figure 10.3.

ACT is the basic communication rule. In order for l : α.P to perform α,
the scheduler should select this process for execution, so the scheduler needs
to be of the form l.S. After the execution the complete process will continue
as P ‖ S. The RES rule models restriction on channel a: communication on
this channel is not allowed by the restricted process. Similarly to the Section
2.5, we denote by (νa)µ the measure µ′ such that µ′((νa)P ‖ S) = µ(P ‖ S)
for all processes P and µ′(R ‖ S) = 0 if R is not of the form (νa)P . SUM1
models nondeterministic choice. If P ‖ S can perform a transition to µ, which
means that S selects one of the labels of P , then P + Q ‖ S will perform the
same transition, i.e. the branch P of the choice will be selected and Q will be
discarded. For example

l1 :a.P + l2 :b.Q ‖ l1.S a−→ δ(P ‖ S)

Note that the operands of the sum do not have labels, the labels belong to the
subprocesses of P and Q. In the case of nested choices, the scheduler must go
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ACT
l :α.P ‖ l.S α−→ δ(P ‖ S)

RES P ‖ S α−→ µ α 6= a, a

(νa)P ‖ S α−→ (νa)µ

SUM1 P ‖ S α−→ µ

P +Q ‖ S α−→ µ
PAR1

P ‖ S α−→ µ

P | Q ‖ S α−→ µ | Q

COM P ‖ l1 a−→ δ(P ′ ‖ 0) Q ‖ l2 a−→ δ(Q′ ‖ 0)
P | Q ‖ (l1, l2).S τ−→ δ(P ′ | Q′ ‖ S)

PROB
l :
∑
i piPi ‖ l.S τ−→∑

i piδ(Pi ‖ S)

REP1 P ‖ S α−→ µ n = n(P, µ) + 1
!P ‖ S α−→ ρ0,n(µ) | ρ1,n(!P )

REP2 P ‖ l1 a−→ δ(P1 ‖ 0) P ‖ l2 a−→ δ(P2 ‖ 0) n = n(P, P1, P2) + 1
!P ‖ (l1, l2).S τ−→ δ(ρ0,n(P1) | ρ10,n(P2) | ρ11,n(!P ) ‖ S)

IF1 l ∈ tl(P ) P ‖ S1
α−→ µ

P ‖ if l then S1 else S2
α−→ µ

IF2 l /∈ tl(P ) P ‖ S2
α−→ µ

P ‖ if l then S1 else S2
α−→ µ

Figure 10.3: The semantics of CCSσ. SUM1 and PAR1 have corresponding
right rules SUM2 and PAR2, omitted for simplicity.

deep and select the label of a prefix, thus resolving all the choices at once.
PAR1 has a similar behavior for the parallel composition. The scheduler

selects P to perform a transition on the basis of the label. The difference is
that in this case Q is not discarded; it remains in the continuation. µ | Q
denotes the measure µ′ such that µ′(P | Q ‖ S) = µ(P ‖ S). COM models
synchronization. If P ‖ l1 can perform the action a and Q ‖ l2 can perform
ā, then (l1, l2).S, scheduling both l1 and l2 at the same time, can synchronize
the two. PROB models internal probabilistic choice. Note that the scheduler
cannot affect the outcome of the choice, it can only schedule the choice as a
whole (this is why a probabilistic sum has a label) and the process will move
to a measure containing all the operands with corresponding probabilities.

REP1 and REP2 model replication. The rules are the same as in CCSp,
with the addition of a re-labeling operator ρt,n. The reason for this is that we
want to avoid ending up with multiple copies of the same label as the result
of replication, since this would create ambiguities in scheduling as explained in
Section 10.1.3. ρt,n(P ) appends t to the index of all labels of P at position n,
padding the index with zeros if needed:

ρt,n(ls :α.P ) = ls0
mt :α.ρt,n(P )

ρt,n(ls :
∑
i piPi) = ls0

mt :
∑
i piρt,n(Pi)

ρt,n(ls :0) = ls0
mt :0
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where m = n− |s| − 1

and homomorphically on the other operators (for instance ρt,n(P | Q) =
ρt,n(P ) | ρt,n(Q)). We denote by 0m the string consisting of m zeroes. We
also denote by ρt,n(µ) the measure µ′ such that µ′(ρt,n(P ) ‖ S) = µ(P ‖ S).

Note that n must be bigger than the length of all the indexes of P . To
ensure this, we define n(P1, . . . , Pm) as the function returning the maximum
index length of any label in P1, . . . , Pm, and similarly for n(µ). We use n(·) in
the semantics to select a proper n. Note also that we relabel only the resulting
process, not the continuation of the scheduler: there is no need for relabeling
the scheduler since we are free to choose the continuation as we please.

Finally if-then-else allows the scheduler to adjust its behavior based on
the labels that are available in P . tl(P ) gives the set of top-level labels of P
and is defined as

tl(l :α.P ) = tl(l :
∑
i piPi) = tl(l :0) = {l}

and as the union of the top-level labels of all sub-processes for the other oper-
ators. Then if l then S1 else S2 behaves like S1 if l is available in P and as
S2 otherwise. This is needed when P is the outcome of a probabilistic choice,
as discussed in Section 10.2.

10.1.3 Deterministic labelings

The idea in CCSσ is that a syntactic scheduler will be able to completely resolve
the nondeterminism of the process, without needing to rely on a semantic
scheduler at the level of the automaton. This means that the execution of a
process in parallel with a scheduler should be fully probabilistic. To achieve
this we will impose a condition on the labels that we can use in CCSσ processes.
A labeling is an assignment of labels to the prefixes, the probabilistic sums and
the 0s of a process. We will require all labelings to be deterministic in the
following sense.

Definition 10.1.1. A labeling of a process P is deterministic iff for all sched-
ulers S there is only one transition rule P ‖ S α−→ µ that can be applied and
the labelings of all processes P ′ such that µ(P ′ ‖ S′) > 0 are also deterministic.

In the general case, it is impossible to decide weather a particular labeling
is deterministic. However, there are simple ways to construct labeling that are
guaranteed to be deterministic. The most simple family are the linear labelings.

Definition 10.1.2. A labeling is called linear iff for all labels ls11 , l
s2
2 appearing

in the process, l1 6= l2 or s1 � s2 ∧ s2 � s1, where � is the prefix relation on
indexes.

The idea is that in a linear labeling all labels should be pairwise distinct.
The extra condition on the indexes forbids having two (distinct) labels l, l0

since they could become equal as the result of relabeling the first. This is
important for the following proposition.

Proposition 10.1.3. Linear labelings are preserved by transitions.
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Proof. First, notice that the rules only append strings to the indexes of the
process. That is if P α−→ µ, µ(Q) > 0 and lt ∈ lab(Q) then there exists a label
ls ∈ P such that s � t. This is clear since the only relabeling operator ρt,n
only appends strings to indexes.

We will write s � t for s � t∧t � s. First, we notice that s � t iff si 6= ti for
some i ≤ max{|s|, |t|} where si, ti denote the i-th character of s, t respectively.
As a consequence we have that

s � t ⇒ ss′ � tt′ for all s′, t′ (10.2)

since ss′ � tt′ still differ at the i-th character.
The proof is by induction of the “proof tree” of the transition. The base

cases (rules ACT, PROB) are easy since the labels of the resulting process are
a subset of the original ones. For the inductive case, the rules RES, SUM1/2,
IF1, IF2 are easy since the resulting measure µ is the same as in the premise,
so a direct application of the induction hypothesis suffices. Now consider the
PAR1 rule

P ‖ S α−→ µ

P | Q ‖ S α−→ µ | Q
Assume that P | Q has a linear labeling and consider a process P ′ such that
µ(P ′) > 0. We want to show that P ′|Q has a linear labeling, that is if two labels
of P ′|Q have the same base then their indexes must be prefix-incomparable.
Since Q has a linear labeling and so does P ′ (from the induction hypothesis), we
only need to compare indexes between P ′ and Q. Let ls ∈ lab(P ′), lt ∈ lab(Q).
Since P ′ comes from a transition of P then there exists ls

′ ∈ lab(P ) such that
s′ � s, and since P | Q has a linear labeling then s′ � t. So from (10.2) we
have s � t.

Then consider the REP1 rule

P ‖ S α−→ µ n = n(P, µ) + 1

!P ‖ S α−→ ρ0,n(µ) | ρ1,n(!P )

Let P ′ be a process such that µ(P ′) > 0. Again we only need to com-
pare indexes between ρ0,n(P ′) and ρ1,n(!P ). Let ls ∈ lab(ρ0,n(P ′)) and lt ∈
lab(ρ1,n(!P )). By construction s has 0 in the n-th position, while t has 1, so
s � t.

Finally, consider the REP2 rule

P ‖ l1 a−→ δ(P1 ‖ 0) P ‖ l2 a−→ δ(P2 ‖ 0) n = n(P, P1, P2) + 1

!P ‖ (l1, l2).S τ−→ δ(ρ0,n(P1) | ρ10,n(P2) | ρ11,n(!P ) ‖ S)

Let ls1 ∈ lab(ρ0,n(P1)), ls2 ∈ lab(ρ10,n(P2)) and lt ∈ lab(ρ11,n(!P )). Again, by
construction, s1 has 0 in the n-th position while s2, t have 1, and s2 has 0 in
the (n+ 1)-th position while t has 1. So s1 � s2, s1 � t and s2 � t.

Proposition 10.1.4. A linear labeling is deterministic.

Proof. Let P be a process with a linear labeling and let S be a scheduler. We
want to show that there is only one transition P ‖ S α−→ µ enabled. In a linear
labeling, all labels are pairwise distinct, so the label(s) in the root of S appear
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at most once in P . So from the rules PAR1/PAR2, at most one is applicable,
since at most one branch of P | Q contains the required label. The same holds
for SUM1/SUM2.

We want to show that we can construct at most one proof tree for the
transition of P ‖ S. Since we eliminated one rule of the pairs PAR1/2, SUM1/2,
for the remaining rules and for a fixed “type” of process and scheduler, there
is at most one rule applicable. For example for P | Q and l.S only PAR is
applicable, for P | Q and (l1, l2).S only COM is applicable, for !P and l.S only
REP1 and so on. And since the premises of all rules involve a simpler process
or a simpler scheduler, the result comes easily by induction on the structure of
P ‖ S.

The proof that all processes enabled by µ have also deterministic labelings
comes from the fact that linear labelings are preserved by transitions.

There are labelings that are deterministic without being linear. In fact, such
labelings will be the means by which we hide information from the scheduler.
However, the property of being deterministic is crucial since it implies that the
scheduler will resolve all the nondeterminism of the process.

Proposition 10.1.5. Let P be a CCSσ process with a deterministic labeling.
Then for all schedulers S, the automaton produced by P ‖ S is fully probabilis-
tic.

Proof. Direct application of the definition of deterministic labeling.

10.2 Expressiveness of the syntactic scheduler

CCSσ with deterministic labelings allows us to separate probabilities from non-
determinism in a straightforward way: a process in parallel with a scheduler
behaves in a fully probabilistic way and the nondeterminism arises from the fact
that we can have many different schedulers. We may now ask the question:
how powerful are the syntactic schedulers wrt the semantic ones, i.e. those
defined directly over the automaton?

Let P be a CCSp process and Pσ be the CCSσ process obtained from P by
applying a linear labeling. We denote this relation by P ≡l Pσ. We say that
the semantic scheduler ζ of P is equivalent to the syntactic scheduler S of Pσ,
written ζ ∼P S, iff the automata etree(P, ζ) and Pσ ‖ S are probabilistically
bisimilar.

A scheduler S is non-blocking for a process P if it always schedules some
transitions, except when P itself is blocked. Let Sem(P ) be the set of the
semantic schedulers for the process P and Syn(Pσ) be the set of the non-
blocking syntactic schedulers for process Pσ. Then we can show that for all
semantic schedulers of P we can create a equivalent syntactic one for Pσ.

Proposition 10.2.1. Let P be a CCS process and let Pσ be a CCSσ process
obtained by adding a linear labeling to P . Then ∀ζ ∈ Sem(P ) ∃S ∈ Syn(Pσ) :
ζ ∼P S.

Proof. Let P be a CCSp process and let M = (S, P,A,D) be the corresponding
automaton. An execution of M is a sequence ϕ = Pα1P1 . . . αnPn such that
Pi−1

αi−→ µ and µ(Pi) > 0. Let ζ : exec∗(M) → D be a scheduler for M .
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etree(ζ,M) is a fully probabilistic automaton having as states the executions
of M and where ϕ α−→ µ′ iff ζ(ϕ) = (Pn, α, µ) and µ′(ϕαPn+1) = µ(Pn+1).

Let Pσ be a CCSσ process such that P ≡l Pσ. To simplify the notation we
will use Q for CCSσ processes, so let Q = Pσ.

First note that for each rule in the semantics of CCSp there is a correspond-
ing rule for CCSσ with the only addition being the syntactic scheduler and the
labels of the resulting process. Thus, we can show that

P
α−→ µ ∧ P ≡l Q⇒ ∃S : Q ‖ S α−→ µ′ and ∀1 ≤ i ≤ n :

µ(Pi) = µ′(Qi ‖ Sc) with Pi ≡l Qi
where {P1, . . . , Pn} is the support of µ. If t = (P, α, µ) ∈ D (the tuple describ-
ing the transition of P ) then let sched(t, Q) denote the head of the scheduler
S above. For example if t = (a.P ′, a, P ′) and Q = l :a.Q′ then sched(t, Q) = l.

We construct the syntactic scheduler for a process Q corresponding to the
semantic scheduler ζ, at state ϕ with lstate(ϕ) ≡l Q, as follows

S(ζ, ϕ,Q) ∆= sched(ζ(ϕ), Q).
if lm(Q1) then S(ζ, ϕαP1, Q1) else

. . .

if lm(Qn−1) then S(ζ, ϕαPn−1, Qn−1) else

S(ζ, ϕαPn, Qn)

(10.3)

where ζ(ϕ) = (P, α, µ), {P1, . . . , Pn} is the support of µ and Q1, . . . , Qn are
the corresponding processes in the support of µ′ in the transition Q ‖ S a−→ µ′

with S = sched(ζ(ϕ), Q). Such a transition always exists, as explained in the
previous paragraph. lm(Q) returns the left-most label appearing in Q, note
that all processes contain at least one label since they contain at least one 0.

Now let ζ ∈ Syn(P ), ϕ0 = P (empty execution) and S = S(ζ, ϕ0, Q).
We compare the automata etree(P, ζ) and Q ‖ S and we show that they are
bisimilar by creating a bisimulation relation that relates their starting states
ϕ0 and Q ‖ S. First we define an equivalence ≡Q on schedulers as

S ≡Q S′ iff Q ‖ S α−→ µ ⇔ Q ‖ S′ α−→ µ

Intuitively S ≡Q S′ iff they have the same effect on the process Q, for example
if S′ is an if-then-else construct that enables S. We now define a relation
R ⊆ states(etree(P, ζ)) ∪ states(Q ‖ S) as follows

ϕ R (Q ‖ S) iff lstate(ϕ) ≡l Q and S ≡Q S(ζ, ϕ,Q)

and we show that R is a strong bisimulation. Suppose that ϕ R (Q ‖ S) and
ϕ

α−→ µ. Let {P1, . . . , Pn} be the support of µ. Since S ≡Q S(ζ, ϕ,Q) then
(by construction of S(ζ, ϕ,Q)) there exists a transition Q ‖ S α−→ µ′ where
µ′(Qi ‖ Sc) = µ(Pi) and Pi ≡l Qi for 1 ≤ i ≤ n. The scheduler Sc above,
common for all Qi’s, is the if-then-else construct of (10.3), containing all
S(ζ, ϕαPi, Qi)’s, each guarded by if lm(Qi). Since the label of Q is linear then
all labels are pairwise distinct, so the Qi’s have disjoint labels that is lm(Qi)
cannot appear in lb(Qj) for i 6= j. This means that Sc ≡Qi

S(ζ, ϕαPi, Qi) since
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only the i-th branch of Sc can be enabled by Qi. Thus we have Pi R (Qi ‖ Sc),
for all 1 ≤ i ≤ n, which implies that µ R µ′.

Similarly for the case where Q ‖ S α−→ µ. By definition of S(ζ, ϕ,Q) there
exists a transition P

α−→ µ′ where µ′(Pi) = µ(Qi ‖ Sc) and Pi ≡l Qi for
1 ≤ i ≤ n. So again Pi R (Qi ‖ Sc), for all 1 ≤ i ≤ n, thus µ R µ′.

To obtain this result the label test (if-then-else) is crucial, in the case P
performs a probabilistic choice. The scheduler uses the test to find out the
result of the probabilistic choice and adapt its behavior accordingly (as the
semantic scheduler is allowed to do). For example let P = l : (l1 : a +p l2 :
b) | (l3 : c + l4 :d). For this process, the scheduler l.(if l1 then l3.l1 else l4.l2)
first performs the probabilistic choice. If the result is l1 : a it performs c, a,
otherwise it performs d, b. This is also the reason we need labels for 0, in case
it is one of the operands of the probabilistic choice.

One would expect to obtain also the inverse of Proposition 10.2.1, showing
the same expressive power for the two kinds of schedulers. We believe that this
is indeed true, but it is technically more difficult to state. The reason is that the
simple translation we did from CCSp processes to CCSσ, namely adding a linear
labeling, might introduce choices that are not present in the original process.
For example let P = (a+p a) | (c+d) and Pσ = l :(l1 :a+p l2 : a) | (l3 :c+ l4 :d).
In P the choice a +p a is not a real choice, it can only do an τ transition and
go to a with probability 1. But in Pσ we make the two outcomes distinct due
to the labeling. So the syntactic scheduler l.(if l1 then l3.l1 else l4.l2) has no
semantic counterpart simply because Pσ has more choices that P , but this is
an artifact of the translation. A more precise translation that would establish
the exact equivalence of schedulers is left as future work.

10.2.1 Using non-linear labelings

Up to now we are using only linear labelings which, as we saw, give us the whole
power of semantic schedulers. However, we can construct non-linear labelings
that are still deterministic, that is there is still only one transition possible at
any time even though we have multiple occurrences of the same label. There
are various cases of useful non-linear labelings.

Proposition 10.2.2. Let P ,Q be CCSσ processes with deterministic labelings
(not necessarily disjoint). The following labelings are all deterministic:

l :(P +p Q) (10.4)
l1 :a.P + l2 :b.Q (10.5)

(νa)(νb)(l1 :a.P + l1 :b.Q | l2 :ā) (10.6)

Proof. Processes (10.4),(10.6) have only one transition enabled, while (10.5)
has two, all enabled by exactly one scheduler. After any of these transitions,
only one of P,Q remains.

Consider the case where P and Q in the above proposition share the same
labels. In (10.4) the scheduler cannot select an action inside P,Q, it must select
the choice itself. After the choice, only one of P,Q will be available so there
will be no ambiguity in selecting transitions. The case (10.5) is similar but
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with nondeterministic choice. Now the guarding prefixes must have different
labels, since the scheduler should be able to resolve the choice, however after
the choice only one of P,Q will be available. Hence, again, the multiple copies
of the labels do not constitute a problem. In (10.6) we allow the same label on
the guarding prefixes of a nondeterministic choice. This is because the guarding
channels a, b are restricted and only one of the corresponding output actions is
available (ā). As a consequence, there is no ambiguity in selecting transitions.
A scheduler (l1, l2) can only perform a synchronization on a, even though l1
appears twice.

However, using multiple copies of a label limits the power of the scheduler,
since the labels provide information about the outcome of a probabilistic choice
(and allow the scheduler to choose different strategies through the use of the
scheduler choice). In fact, this is exactly the technique we will use to achieve
the goals described in the beginning of this chapter. Consider for example the
process:

l :(l1 :ā.R1 +p l1 :ā.R2) | l2 :a.P | l3 :a.Q (10.7)

From Proposition 10.2.2(10.4) this labeling is deterministic. However, since
both branches of the probabilistic sum have the same label l1, the scheduler
cannot resolve the choice between P and Q based on the outcome of the choice.
There is still nondeterminism: the scheduler l.(l1, l2) will select P and the
scheduler l.(l1, l3) will select Q. However this selection will be independent
from the outcome of the probabilistic choice.

Note that we did not impose any direct restrictions on the schedulers, we
still consider all possible syntactic schedulers for the process (10.7) above. How-
ever, having the same label twice limits the power of the syntactic schedulers
with respect to the semantic ones. This approach has the advantage that the
restrictions are limited to the choices with the same label. We already know
that having pairwise distinct labels gives the full power of the semantic sched-
uler. So the restriction is local to the place where we, intentionally, put the
same labels.

10.3 Testing relations for CCSσ processes

Testing relations ([NH84]) are a method of comparing processes by considering
their interaction with the environment. A test is a process running in parallel
with the one being tested and which can perform a distinguished action ω that
represents success. Two processes are testing equivalent if they can pass the
same tests. This idea is very useful for the analysis of security protocols, as
suggested in [AG99], since a test can be seen as an adversary who interferes
with a communication agent and declares ω if an attack is successful. Then
two processes are testing equivalent if they are vulnerable to the same attacks.

In the probabilistic setting we take the approach of [JLY01] which considers
the exact probability of passing a test (in contrast to [PH05] which considers
only the ability to pass a test with probability non-zero (may-testing) or one
(must-testing)). This approach leads to the definition of two preorders vmay

and vmust. P vmay Q means that if P can pass O then Q can also pass
O with the same probability. P vmust Q means that if P always passes O
with at least some probability then Q always passes O with at least the same
probability.
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A labeling of a process is fresh (with respect to a set P of processes) if its
labels do not appear in any other process in P (note that it is not required to
be linear). A test O is a CCSσ process with a fresh labeling (wrt all tested
processes), containing the distinguished action ω. Let TestP denote the set of
all tests with respect to P and let (ν)P denote the restriction on all channels of
P , thus allowing only τ actions. We define pω(P, S,O) to be the probability of
the set of executions of the fully probabilistic automaton (ν)(P | O) ‖ S that
contain ω. Note that this set can be produced as a countable union of disjoint
cones so its probability is well-defined.

Definition 10.3.1. Let P,Q be CCSσ processes. We define must and may
testing preorders as follows:

P vmay Q iff ∀O ∀SP ∃SQ : pω(P, SP , O) ≤ pω(Q,SQ, O)

P vmust Q iff ∀O ∀SQ ∃SP : pω(P, SP , O) ≤ pω(Q,SQ, O)

where O ranges over TestP,Q and SX ranges over Syn((ν)(X | O)).

We also define ≈may,≈must to be the equivalences induced by vmay,vmust

respectively.
A context C is a process with a hole. A preorder v is a precongruence

if P v Q implies C[P ] v C[Q] for all contexts C. May and must testing
are precongruences if we restrict to contexts with linear and fresh labelings
and without occurrences of +. This result is essentially an adaptation to our
framework of the analogous precongruence property in [YL92].

Proposition 10.3.2. Let P,Q be CCSσ processes such that P vmay Q and let
C be a context with a linear and fresh labeling (wrt P,Q) and in which + does
not occur. Then C[P ] vmay C[Q]. Similarly for vmust.

Proof. Without loss of generality we assume that tests do not perform internal
actions, but only synchronizations with the tested process. The proof will be
by induction on the structure of C. Let O range over tests with fresh labelings,
let SP range over Syn((ν)(C[P ] | O)) and SQ range over Syn((ν)(C[Q] | O)).
The induction hypothesis is:

may) ∀O ∀SP ∃SQ : pω(C[P ], SP , O) ≤ pω(C[Q], SQ, O) and

must) ∀O ∀SQ ∃SP : pω(C[P ], SP , O) ≤ pω(C[Q], SQ, O)

We have the following cases for C:

• Case C = []. Trivial.

• Case C = l1 :a.C ′

The scheduler SP has to be of the form SP = (l1, l2).S′P where l2 is the
label of a a prefix in O (if no such prefix exists then the case is trivial).

A scheduler of the form (l1, l2).S can schedule any process of the form
l1 :a.X (with label l1) giving the transition:

(ν)(l1 :a.X | O) ‖ (l1, l2).S τ−→ δ((ν)(X | O′) ‖ S)
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and producing always the same O′. The probability pω will be

pω(l1 :a.X, (l1, l2).S,O) = pω(X,S,O′) (10.8)

Thus for (may) we have

pω(C[P ], (l1, l2).S′P , O) = pω(C ′[P ], S′P , O
′) (10.8)

≤ pω(C ′[Q], S′Q, O
′) Ind. Hyp.

= pω(C[Q], (l1, l2).S′Q, O) (10.8)

= pω(C[Q], SQ, O)

For (must) we can perform the above derivation in the opposite direction,
given that a scheduler for C[Q] must be of the form SQ = (l1, l2).S′Q.

• Case C = C ′ | R
Since we only consider contexts with linear and fresh labeling, the labeling
of R | O is fresh wrt C ′[], so R | O is itself a test, and

pω(X | R,S,O) = pω(X,S,R | O) (10.9)

Thus for (may) we have

pω(C[P ], SP , O) = pω(C ′[P ], SP , R | O) (10.9)

≤ pω(C ′[Q], SQ, R | O) Ind. Hyp.

= pω(C[Q], SQ, O) (10.9)

For (must) we can perform the above derivation in the opposite direction.

• Case C = l1 :(C ′ +p R)
Since we consider only contexts with linear and fresh labelings, the labels
of C ′ are disjoint from those of R. Thus, in order to be non-blocking, the
scheduler of a process of the form l1 :(C ′[P ]+pR) must detect the outcome
of the probabilistic choice and continue as SC if the outcome is C ′[P ] or
as SR otherwise. For example SP could be l1.if l then SC else SR or a
more complicated if-then-else. So we have

pω(l1 :(C ′[P ] +p R), S,O) = p pω(C ′[P ], SC , O)+
p̄ pω(R,SR, O)

(10.10)

where p̄ = 1− p. For (may) we have

pω(l1 :(C ′[P ] +p R), SP , O)

= p pω(C ′[P ], SC , O) + p̄ pω(R,SR, O) (10.10)

≤ p pω(C ′[Q]), S′C , O) + p̄ pω(R,SR, O) Ind. Hyp.

= pω(l1 :(C ′[Q] +p R), l1.(if l then S′C else SR), O)

= pω(C[Q], SQ, O)
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Where l ∈ tl(C ′[Q]) (and thus l /∈ tl(R)). We used the if-then-else in
SQ to imitate the test of SP .

For (must) we can perform the above derivation in the opposite direction.

• Case C = (νa)C ′

The process (ν)((νa)C ′[X] | O) has the same transitions as (ν)(C ′[X] |
(νa)O). The result follows by the induction hypothesis.

• Case C =!C ′.
may) We will first prove that for all m ≥ 1:

∀O ∀SP ∃SQ : pω(C ′[P ]m, SP , O) ≤ pω(C ′[Q]m, SQ, O) (10.11)

C ′[P ]m is defined as C ′[P ]1 = ρ0,n(C ′[P ]) and

C ′[P ]m = C ′[P ]m−1 | ρ1m−10,n(C ′[P ]) m > 1

where n = n(C ′[P ]) + 1. Intuitively, C ′[P ]m is the m-times unfolding
of !C ′[P ], taking into account the relabeling that takes place each time
a new process is spawned. The proof is by induction on m. The base
case m = 1 is trivial. Assuming that it holds for m − 1, the argument
is similar to the case of parallel context. Let R = ρ1m−10,n(C ′[P ]), so
C ′[P ]m = C ′[P ]m−1 | R and since all labels in R are relabeled to make
them disjoint from those of C ′[P ]m−1, we have that R | O has a fresh
labeling so it is itself a test. Thus

pω(C ′[P ]m, SP , O) = pω(C ′[P ]m−1, SP , R | O) (10.9)

≤ pω(C ′[Q]m−1, SQ, R | O) Ind. Hyp.

= pω(C[Q]m, SQ, O) (10.9)

So (10.11) holds. Now assume that the negation of the induction hypoth-
esis holds, that is

∃O∃SP ∀SQ : pω(!C ′[P ], SP , O) > pω(!C ′[Q], SQ, O)

There can be executions containing ω of arbitrary length, however their
probability will go to zero as the length increases. Thus there will be an
m such that if we consider only executions of length at most m then the
above inequality will still hold. But these executions can be simulated
by C ′[P ]m, C ′[Q]m which is impossible by (10.11).

Similarly for (must).

This also implies that ≈may,≈must are congruences. Note that P,Q in the
above proposition are not required to have linear labelings, P might include
multiple occurrences of the same label thus limiting the power of the schedulers
SP . This shows the locality of the scheduler’s restriction: some choices inside
P are hidden from the scheduler but the rest of the context is fully visible.
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If we remove the freshness condition of the context then Proposition 10.3.2 is
no longer true. Let P = l1 :a.l2 :b, Q = l3 :a.l4 :b and C = l :(l1 :a.l2 :c+p [ ]). We
have P ≈may Q but C[P ], C[Q] can be separated by the test O = ā.b̄.ω | ā.c̄.ω
(when the labeling is omitted assume a linear one). It is easy to see that
C[Q] can pass the test with probability 1 by selecting the correct branch of O
based on the outcome of the probabilistic choice. In C[P ] this is not possible
because of the labels l1, l2 that are common in P,C. On the other hand, it is
not clear if the linearity of the context’s labeling is indispensable for the above
Proposition, the condition is needed for the proof but yet we haven’t found any
counter-examples.

We can now state the result that we announced in the beginning of the
chapter.

Theorem 10.3.3. Let P,Q be CCSσ processes and C a context with a linear
and fresh labeling and without occurrences of bang. Then

l :(C[l1 :τ.P ] +p C[l1 :τ.Q]) ≈may C[l :(P +p Q)] and
l :(C[l1 :τ.P ] +p C[l1 :τ.Q]) ≈must C[l :(P +p Q)]

Proof. Since we will always use the label l for all probabilistic sum +p, and l0
for τ.P and τ.Q, we will omit these labels to make the proof more readable.
We will also denote (1− p) by p̄.

Let R1 = C[τ.P ] +p C[τ.Q] and R2 = C[P +p Q]. We will prove that for
all tests O and for all schedulers S1 ∈ Syn((ν)(R1 | O)) there exists S2 ∈
Syn((ν)(R2 | O)) such that pω(R1, S1, O) = pω(R2, S2, O) and vice versa. This
implies both R1 ≈may R2 and R1 ≈must R2.

Without loss of generality we assume that tests do not perform internal
actions, but only synchronizations with the tested process. First, it is easy to
see that

pω(P +p Q, l.S,O) = p pω(P, S,O) + p̄ pω(Q,S,O) (10.12)
pω(l1 :a.P, (l1, l2).S,O) = pω(P, S,O′) (10.13)

where (ν)(l1 :a.P | O) ‖ (l1, l2).S τ−→ δ((ν)(P | O′ ‖ S)).
In order for the scheduler of R1 to be non-blocking, it has to be of the form

l.S1, since the only possible transition of R1 is the probabilistic choice labeled
by l. By (10.12) we have

pω(C[τ.P ] + C[τ.Q], l.S1, O) = p pω(C[τ.P ], S1, O) + p̄ pω(C[τ.Q], S1, O)

The proof will be by induction on the structure of C. Let O range over tests
with fresh labelings, let S1 range over non-blocking schedulers for both C[τ.P ]
and C[τ.Q] (such that l.S1 is a non-blocking scheduler for R1) and let S2 range
over non-blocking schedulers for R2. The induction hypothesis is:

⇒) ∀O ∀S1 ∃S2 :

p pω(C[τ.P ], S1, O) + p̄ pω(C[τ.Q], S1, O) = pω(C[P +p Q], S2, O) and

⇐) ∀O ∀S2 ∃S1 :

p pω(C[τ.P ], S1, O) + p̄ pω(C[τ.Q], S1, O) = pω(C[P +p Q], S2, O)

We have the following cases for C:
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• Case C = []. Trivial.

• Case C = l1 :a.C ′

The scheduler S1 of C[τ.P ] and C[τ.Q] has to be of the form S1 =
(l1, l2).S′1 where l2 is the label of a a prefix in O (if no such prefix exists
then the case is trivial).

A scheduler of the form (l1, l2).S can schedule any process of the form
l1 :a.X (with label l1) giving the transition:

(ν)(l1 :a.X | O) ‖ (l1, l2).S τ−→ δ((ν)(X | O′) ‖ S)

and producing always the same O′. The probability pω for these processes
will be given by equation (10.13).

Thus for (⇒) we have

p pω(l1 :a.C[τ.P ], (l1, l2).S′1, O) + p̄ pω(l1 :a.C[τ.Q], (l1, l2).S′1, O)

= p pω(C ′[τ.P ], S′1, O
′) + p̄ pω(C ′[τ.Q], S′1, O

′) (10.13)

= pω(C ′[P +p Q], S′2, O
′) Ind. Hyp.

= pω(l1 :a.C ′[P +p Q], (l1, l2).S′2, O) (10.13)

= pω(R2, S2, O)

For (⇐) we can perform the above derivation in the opposite direction,
given that a scheduler for R2 = l1 : a.C ′[P +p Q] must be of the form
S2 = (l1, l2).S′2.

• Case C = C ′ | R
Since we only consider contexts with linear and fresh labelings, the la-
beling of R | O is fresh so it is itself a test, and

pω(X | R,S,O) = pω(X,S,R | O) (10.14)

Thus for (⇒) we have

p pω(C ′[τ.P ] | R,S1, O) + p̄ pω(C ′[τ.Q] | R,S1, O)

= p pω(C ′[τ.P ], S1, R | O) + p̄ pω(C ′[τ.Q], S1, R | O) (10.14)

= pω(C ′[P +p Q], S2, R | O) Ind. Hyp.

= pω(C ′[P +p Q] | R,S2, O) (10.14)

= pω(R2, S2, O)

For (⇐) we can perform the above derivation in the opposite direction.

• Case C = l1 :(C ′ +q R)
Since we consider only contexts with linear and fresh labelings, the labels
of C ′ are disjoint from those of R, thus the scheduler of a process of the
form l1 :(C ′[X]+qR) must be of the form S = l1.(if lC then SC else SR)
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where lC ∈ tl(C ′[X]), SC is a scheduler containing labels of C ′[X] and
SR is a scheduler containing labels of R. Moreover

pω(l1 :(C ′[X] +q R), S,O)
= q pω(C ′[X], if lC then SC else SR, O) +

q̄ pω(R, if lC then SC else SR, O)
= q pω(C ′[X], SC , O) + q̄ pω(R,SR, O) (10.15)

As a consequence, the scheduler S1 of C[τ.P ] and C[τ.Q] has to be of
the form S1 = l1.(if lC then SC else SR). Note that tl(C ′[τ.P ]) =
tl(C ′[τ.Q]) so the two processes cannot be separated by a test. SC will
schedule both (possibly separating them later).

For (⇒) we have

p pω(l1 :(C ′[τ.P ] +q R), S1, O) + p̄ pω(l1 :(C ′[τ.Q] +q R), S1, O)

= q(p pω(C ′[τ.P ], SC , O) + p̄ pω(C ′[τ.Q], SC , O))+

q̄ pω(R,SR, O) (10.15)

= q pω(C ′[P +p Q]), S′C , O)+

q̄ pω(R,SR, O) Ind. Hyp.

= pω(l1 :(C ′[P +p Q] +q R), l1.(if l′C then S′C else SR), O) (10.15)

= pω(R2, S2, O)

Where l′C ∈ tl(C ′[P +p Q]) (and thus l′C /∈ tl(R)).

For (⇐) we can perform the above derivation in the opposite direction,
given that a scheduler for R2 = l1 :(C ′[P +pQ]+qR) must be of the form
S2 = l1.(if l′C then S′C else SR).

• Case C = C ′ +R
Consider the process C ′[l0 : τ.P ] + R. The scheduler S1 of this process
has to choose between C ′[l0 :τ.P ] and R.

There are two cases to have a transition using the SUM1, SUM2 rules.

i) Either S1 = SR and

(ν)(R | O) ‖ SR α−→ µ
SUM2

(ν)(C ′[l0 :τ.P ] +R | O) ‖ SR α−→ µ

In this case

pω(C ′[l0 :τ.P ] +R,SR, O) = pω(R,SR, O) (10.16)

ii) Or S1 = SC and

(ν)(C ′[l0 :τ.P ] | O) ‖ SC α−→ µ
SUM1

(ν)(C ′[l0 :τ.P ] +R | O) ‖ SC α−→ µ

In this case

pω(C ′[l0 :τ.P ] +R,SC , O) = pω(C ′[l0 :τ.P ], SC , O) (10.17)
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Now consider the process C ′[l0 :τ.Q] +R. Since P and Q are behind the
l0 : τ action, we have tl(C ′[l0 : τ.Q] = tl(C ′[l0 : τ.P ]). Thus SR and SC
will select R and C ′[l0 : τ.Q] respectively and the equations (10.16) and
(10.17) will hold.

In the case (i) (S = SR) we have:

p pω(C ′[τ.P ] +R,SR, O) + p̄ pω(C ′[τ.Q] +R), SR, O)

= p pω(R,SR, O) + p̄ pω(R,SR, O) (10.16)

= pω(R,SR, O)

= pω(C ′[P +p Q] +R,SR, O)

= pω(R2, S2, O)

In the case (ii) (S = SC) we have:

p pω(C ′[τ.P ] +R,SC , O) + p̄ pω(C ′[τ.Q] +R), SC , O)

= p pω(C ′[τ.P ], SC , O) + p̄ pω(C ′[τ.Q], SC , O) (10.17)

= pω(C ′[P +p Q], S′C , O) Ind. Hyp.

= pω(C ′[P +p Q] +R,S′C , O)

= pω(R2, S2, O)

For (⇐) we can perform the above derivation in the opposite direction.

• Case C = (νa)C ′

The process (ν)((νa)C ′[X] | O) has the same transitions as (ν)(C ′[X] | (νa)O).
The result follows by the induction hypothesis.

There are two crucial points in the above Theorem. The first is that the
labels of the context are copied, thus the scheduler cannot distinguish between
C[l1 :τ.P ] and C[l1 :τ.Q] based on the labels of the context. The second is that
P,Q are protected by a τ action labeled by the same label l1. This is to ensure
that in the case of a nondeterministic sum (C = R + []) the scheduler cannot
find out whether the second operand of the choice is P or Q unless it commits
to selecting the second operand. For example let R = a +0.5 0, P = a, Q = 0
(all omitted labels are linear). Then R1 = (R+ P ) +0.1 (R+Q) is not testing
equivalent to R2 = R+ (P +0.1Q) since they can be separated by O = a.ω and
a scheduler that resolves R + P to P and R + Q to R (it will be of the form
if lP then SP else SR). However, if we take R′1 = (R+l1 :τ.P )+0.1(R+l1 :τ.Q)
then R′1 is testing equivalent to R2 since now the scheduler cannot see the labels
of P,Q so if it selects P then it is bound to also select Q.

The problem with replication is simply the persistence of the processes.
Clearly !P+p!Q cannot be equivalent to !(P +p Q), since the first replicates
only one of P,Q while the second replicates both. However Theorem 10.3.3
together with Proposition 10.3.2 imply that

C ′[l :(C[l1 :τ.P ] +p C[l1 :τ.Q])] ≈may C
′[C[l :(P +p Q)]] (10.18)

161



10. The problem of the scheduler

where C is a context without bang and C ′ is a context without +. The same is
also true for ≈must. This means that we can lift the sum towards the root of the
context until we reach a bang. Intuitively we cannot move the sum outside the
bang since each replicated copy must perform a different probabilistic choice
with a possibly different outcome.

Theorem 10.3.3 shows that the probabilistic choice is indeed private to the
process and invisible to the scheduler. The process can perform it at any time,
even in the very beginning of the execution, without making any difference to
an outside observer.

10.4 An application to security

In this section we discuss an application of our framework to anonymity. In
particular, we show how to specify the Dining Cryptographers protocol so that
it is robust to scheduler-based attacks. We first propose a method to encode
secret value passing, which will turn out to be useful for the specification.

10.4.1 Encoding secret value passing

We propose to encode the passing of a secret message as follows:

l :c(x).P ∆=
∑
v∈V l :cv.P [v/x]

l : c̄〈v〉.P ∆= l :cv.P

where V is the set of values that can be transmitted through channel c. This
is the usual encoding of value passing in CCS: we use a non-deterministic sum
with a distinct channel cv for each v. The novelty is that we use the same label
in all the branches of the nondeterministic sum. To ensure that the resulting
labeling will be deterministic we should restrict the channels cv and make sure
that there will be at most one output on c. We will write (νc)P for (νv∈V cv)P .
For example, the labeling of the following process is deterministic:

(νc)(l1 :c(x).P | l :(l2 : c̄〈v〉+p l2 : c̄〈w〉))

This case is a combination of the cases (10.4) and (10.6) of Proposition 10.2.2.
The two outputs on c are on different branches of the probabilistic sum, so
during an execution at most one of them will be available. Thus there is no
ambiguity in scheduling the sum produced by c(x). The scheduler l.(l1, l2)
will perform a synchronization on cv or cw, whatever is available after the
probabilistic choice. In other words, using the labels we manage to hide the
information about which value was transmitted to P .

10.4.2 Dining cryptographers with probabilistic master

We consider once again the problem of the dining cryptographers, this time
adding a factor that we omitted from the previous analysis. We already pre-
sented in Section 5.2 a proof that the protocol satisfies anonymity under the
assumption of fair coins, that is pc(~o|ai) = pc(~o|aj) for all announcements ~o
and users ai, aj . In this analysis, however, we only considered the value that
each cryptographer announces, without considering the order in which they
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Master
∆= l1 :

∑2
i=0 pi(m0〈i == 0〉︸ ︷︷ ︸

l2

| m1〈i == 1〉︸ ︷︷ ︸
l3

| m2〈i == 2〉︸ ︷︷ ︸
l4

)

Crypti
∆= mi(pay)︸ ︷︷ ︸

l5,i

. ci,i(coin1)︸ ︷︷ ︸
l6,i

. ci,i⊕1(coin2)︸ ︷︷ ︸
l7,i

. outi〈pay ⊗ coin1 ⊗ coin2〉︸ ︷︷ ︸
l8,i

Coini
∆= l9,i :((c̄i,i〈0〉︸ ︷︷ ︸

l10,i

| c̄i	1,i〈0〉︸ ︷︷ ︸
l11,i

) +0.5 (c̄i,i〈1〉︸ ︷︷ ︸
l10,i

| c̄i	1,i〈1〉︸ ︷︷ ︸
l11,i

))

Prot
∆= (ν ~m)(Master | (ν~c)(∏2

i=0 Crypti |
∏2
i=0 Coini))

Figure 10.4: Encoding of the dining cryptographers with probabilistic master

make their announcements. In other words, we considered the announcement
aad to be the same, whether it corresponds to c1 = a, c2 = a, c3 = d or to
c2 = a, c3 = d, c1 = a (in the indicated order).

If we want to allow the cryptographers to make announcements in any
order, then the only reasonable way to model the choice of order is non-
deterministically. But this leads immediately to a simple attack: if the sched-
uler is unrestricted then it can base its strategy on the decision of the master,
by selecting the paying cryptographer last (or first). Clearly, an external ob-
server would trivially identify the payer just from the fact that he spoke last.
A similar situation would arise if the scheduler based its decision on the value
of the coins.

A natural question to ask at this point is whether this attack is realistic,
or just an artifact of the non-deterministic model. For instance, is it possible
for the scheduler to know the decision of the master? The answer is that
this attack could appear in practice without even a malicious intention from
the part of the scheduler. For example, the payer needs to make one more
calculation to add 1 to its announcement, so it could be the case that he needs
more time to make his announcement than the other cryptographers so he is
scheduled last. Moreover, [Cho07] shows a simple implementation of the Dining
Cryptographers in Java where the scheduling problem appears because of the
way Java optimizes threads.

In any case, the scheduler restrictions, if any, should be part of the require-
ments when stating the anonymity properties of a protocol. For example the
analysis should state “assuming that the coins are fair and that the scheduler’s
decisions are independent from the master’s choice and from the coins, DC sat-
isfies strong anonymity”. This way an implementor of the protocol will have
to verify that the scheduler condition is satisfied, or somehow assume that it
is.

In our framework we can solve the problem by giving a specification of the
DCP in which the choices of the master and of the coins are made invisible
to the scheduler. The specification is shown in Figure 10.4. We use some
meta-syntax for brevity: The symbols ⊕ and 	 represent the addition and
subtraction modulo 3, while ⊗ represents the addition modulo 2 (xor). The
notation i ==n stands for 1 if i = n and 0 otherwise.
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There are many sources of nondeterminism: the order of communication
between the master and the cryptographers, the order of reception of the
coins, and the order of the announcements. The crucial points of our spec-
ification, which make the nondeterministic choices independent from the prob-
abilistic ones, are: (a) all communications internal to the protocol (master-
cryptographers and cryptographers-coins) are done by secret value passing,
and (b) in each probabilistic choice the different branches have the same la-
bels. For example, all branches of the master contain an output on m0, always
labeled by l2, but with different values each time.

We can extend the definition of strong anonymity to the non-deterministic
setting in a straightforward way, as suggested in [BP05]. Now each scheduler
S induces a different family of conditional distributions pS(·|a). So for each
scheduler we will define an anonymity system SystS = (A,O, pS) and we re-
quire that all of them satisfy strong anonymity. That is for all schedulers S,
observables o and users a, a′: pS(o|a) = pS(o|a′).

In our example, let ~o represent an observable (the sequence of announce-
ments), and pS(~o | mi〈1〉) represent the conditional probability, under the
scheduler S, that the protocol produces ~o given that the master has selected
cryptographer i as the payer. Thanks to the above independence, the specifi-
cation satisfies strong anonymity.

Proposition 10.4.1 (Strong anonymity). The protocol in Figure 10.4 satis-
fies strong anonymity, that is: for all schedulers S and for all observables ~o:
pS(~o | m0〈1〉) = pS(~o | m1〈1〉) = pS(~o | m2〈1〉).

Proof. Since the process is finite and so is the number of schedulers the Proposi-
tion can be verified by calculating the probability of all traces under all sched-
ulers (this could be even done automatically). Here we make a higher level
argument to show that the Proposition holds.

Let v1, v2, v3 be the values announced by the cryptographers, that is vi is the
output of the subprocess outi〈pay ⊗ coin1 ⊗ coin2〉. These values depend only
on the selection of the master (pay) and the outcome of the coins (coin1, coin2)
and not on the scheduler, the latter can only affect their order. From the proof
of strong anonymity for a fixed announcement order (Theorem 5.2.1) we know
that p(v1, v2, v3|ai) = p(v1, v2, v3|aj) for all cryptographers i, j and all values
of v1, v2, v3.

Now the observables of the protocol are of the form ~o = outk1〈vki
〉, outk2〈vk2〉,

outk3〈vk3〉 where k1, k2, k3 is the index of the cryptographer who speaks first,
second and third respectively. The order (that is the ki’s) depends on the sched-
uler. However, in all random choices the same labels appear in both branches
of the choice, so a scheduler cannot use an if-then-else test to “detect” the
outcome of the choice (it would be useless since the same branch of the if
would be always activated). As a consequence, the order is fixed for a particu-
lar scheduler, that is a scheduler uniquely defines the ki’s above. With a fixed
order, the probability of each ~o is equal to the probability of the corresponding
vi’s, thus

pS(~o | mi〈1〉) = p(v1, v2, v3|ai) = p(v1, v2, v3|aj) = pS(~o | mj〈1〉)
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P ::= . . . | l :{P}
CP ::= P ‖ S, T

INDEP P ‖ T α−→ µ

l :{P} ‖ l.S, T α−→ µ′

where µ′(P ′ ‖ S, T ′) = µ(P ′ ‖ T ′)

Figure 10.5: Adding an “independent” scheduler to the calculus

Note that different schedulers will produce different traces (we still have
nondeterminism) but they will not depend on the choice of the master.

Some previous treatment of the DCP, including [BP05], had solved the
problem of the leak of information due to too-powerful schedulers by simply
considering as observable sets of announcements instead than sequences. Thus
one could think that using a true concurrent semantics, for instance event
structures, would solve the problem. We would like to remark that this is false:
true concurrency would weaken the scheduler enough in the case of the DCP,
but not in general. For instance, it would not help in the anonymity example
in the beginning of this chapter.

10.4.3 Dining cryptographers with nondeterministic master

Up to now we considered the master in the dining cryptographers to be proba-
bilistic, that is we assume that the master makes his decision using some prob-
ability distribution. An interesting question is whether we can remove this
assumption, that is make the same analysis with a non-deterministic master.
However, this case poses a conceptual problem: as we discussed in the previ-
ous paragraph, the decision of the master should be invisible to the scheduler.
But if the master is non-deterministic then the scheduler itself will make the
decision, so how is it possible for a scheduler to be oblivious to his own choices?

We sketch here a method to hide also certain nondeterministic choices from
the scheduler. First we need to extend the calculus with the concept of a second
independent scheduler T that we assume to resolve the nondeterministic choices
that we want to make transparent to the main scheduler S. The new syntax
and semantics are shown in Figure 10.5. l : {P} represents a process where
the scheduling of P is protected from the main scheduler S. The scheduler
S can “ask” T to schedule P by selecting the label l. Then T resolves the
nondeterminism of P as expressed by the INDEP rule. Note that we need to
adjust also the other rules of the semantics to take T into account, but this
change is straightforward. We assume that T does not collaborate with S so
we do not need to worry about the labels in P .

To model the dining cryptographers with nondeterministic master we re-
place the Master process in Figure 10.4 by the following one.

Master
∆= l1 :

{∑2
i=0 l12,i :τ.(m0〈i == 0〉︸ ︷︷ ︸

l2

| m1〈i == 1〉︸ ︷︷ ︸
l3

| m2〈i == 2〉︸ ︷︷ ︸
l4

)
}

Essentially we have replaced the probabilistic choice by a protected nondeter-
ministic one. Note that the labels of the operands are different but this is
not a problem since this choice will be scheduled by T . Note also that after
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the choice we still have the same labels l2, l3, l4, however the labeling is still
deterministic, similarly to the case 10.5 of Proposition 10.2.2.

In case of a nondeterministic selection of anonymous events, and a prob-
abilistic anonymity protocol, the notion of strong anonymity has not been
established yet, although some possible definitions have been discussed in
[BP05]. Our framework makes it possible to give a natural and precise def-
inition. As we did in the previous paragraph, we will define an anonymity
system SystS = (A,O, pS) for each scheduler S, where pS(·|ai) is a probability
distribution on O corresponding to cryptographer i. The selection of cryptog-
rapher i is made by the corresponding scheduler Ti = l12,i, so we define pS
as

pS(~o|ai) = pS,Ti
(~o)

where pS,Ti is the probability measure on traces induced by the semantics of
the process Prot ‖ S, Ti. Finally we require all anonymity systems SystS to
be strongly anonymous in the usual sense (Def. 5.1.1).

Definition 10.4.2 (Strong anonymity for nondeterministic anonymous events).
A protocol with nondeterministic selection of the anonymous event satisfies
strong anonymity iff all the anonymity systems SystS = (A,O, pS) defined
above are strongly anonymous. This means that for all observables ~o ∈ O,
schedulers S, and independent schedulers Ti, Tj (selecting anonymous events
ai, aj), we have: pS,Ti(~o) = pS,Tj (~o).

We can prove the above property for our protocol:

Proposition 10.4.3. The DCP with nondeterministic master, specified in this
section, satisfies strong anonymity.

Proof. Similar to Proposition 10.4.1, since pS,Ti
(~o) is equal to pS(~o | mi〈1〉) in

the protocol with probabilistic master.

10.5 Related work

The works that are most closely related to ours are [CCK+06a, CCK+06b,
GvRS07]. The authors of [CCK+06a, CCK+06b] consider probabilistic au-
tomata and introduce a restriction on the scheduler to the purpose of making
them suitable to applications in security protocols. Their approach is based
on dividing the actions of each component of the system in equivalence classes
(tasks). The order of execution of different tasks is decided in advance by a so-
called task scheduler. The remaining nondeterminism within a task is resolved
by a second scheduler, which models the standard adversarial scheduler of the
cryptographic community. This second entity has limited knowledge about the
other components: it sees only the information that they communicate during
execution.

Reference [GvRS07] defines a notion of admissible scheduler by introducing
an equivalence relation on the nodes of the execution tree, and requiring that
an admissible scheduler maps two equivalent nodes into bisimilar steps. Both
we and [GvRS07] have developed, independently, the solution to the problem
of the scheduler in the Dining Cryptographers as an example of application to
security.
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Another work along these lines is [dAHJ01], which uses partitions on the
state-space to obtain partial-information schedulers. However [dAHJ01] con-
siders a synchronous parallel composition, so the setting is rather different from
[CCK+06a, CCK+06b, GvRS07] and ours.

Our approach is in a sense dual to the above ones. Instead of defining a
restriction on the class of schedulers, we provide a way to specify that a choice
is transparent to the schedulers. We achieve this by introducing labels in pro-
cess terms, used to represent both the nodes of the execution tree and the
next action or step to be scheduled. We make two nodes indistinguishable to
schedulers, and hence the choice between them private, by associating to them
the same label. Furthermore, in contrast with [CCK+06a, CCK+06b], our
“equivalence classes” (schedulable actions with the same label) can change dy-
namically, because the same action can be associated to different labels during
the execution. However we don’t know at the moment whether this difference
determines a separation in the expressive power.

167





Eleven

Analysis of a contract-signing protocol

Up to now we have focused exclusively on the notion of anonymity. In this
chapter we look at the more general category of probabilistic security protocols,
that is protocols involving probabilistic choices and often relying on specific
randomized primitives such as the Oblivious Transfer ([Rab81]). Such protocols
are used for various purposes including signing contracts, sending certified email
and protecting the anonymity of communication agents. There are various
examples in this category, notably the contract signing protocol in [EGL85]
and the privacy-preserving auction protocol in [NPS99].

A large effort has been dedicated to the formal verification of security pro-
tocols, and several approaches based on process-calculi techniques have been
proposed. However, in the particular case of probabilistic protocols, they have
been analyzed mainly by using model checking methods, while only few at-
tempts of applying process calculi techniques have been made. One proposal
of this kind is [AG02], which defines a probabilistic version of the noninterfer-
ence property, and uses a probabilistic variant of CCS and of bisimulation to
analyze protocols wrt this property.

In this chapter we show how to apply the tools developed in the previous
chapter to analyze probabilistic security protocols. We express the intended
security properties of the protocol using the may-testing preorder discussed in
the previous chapter: a process P is considered smaller than a process Q if,
for each test, the probability of passing the test is smaller for P than for Q.
Following the lines of [AG99], a test can be seen as an adversary who interacts
with an agent in order to break some security property. Then the analysis
proceeds as follows: we first model the protocol in the CCSσ calculus, then we
create a specification that models the ideal behavior of the protocol and can
be shown to satisfy the desired property. The final step is to show that the
protocol is smaller than the specification with respect to the testing preorder.
If this holds, then an attack of any possible adversary (viewed as an arbitrary
test) has even smaller probability of breaking the protocol than of breaking the
specification, so the protocol itself satisfies the desired property.

We illustrate this technique on a fair exchange protocol (used for contract
signing), where the property to verify is fairness. In this kind of protocol two
agents, A and B, want to exchange information simultaneously, namely each of
them is willing to send its secrets only if he receives the ones of the other party.
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We consider the Partial Secrets Exchange protocol (PSE, [EGL85]) which uses
the Oblivious Transfer as its main primitive. An important characteristic of
the fair exchange protocols is that the adversary is in fact one of the agents
and not an external party. After encoding the protocol in CCSσ, we give a
specification which models the ideal behavior of A. We then express fairness
by means of a testing relation between the protocol and the specification and
we prove that it holds.

It should be noted that in this analysis, the ability of CCSσ to hide infor-
mation from the scheduler is not used in a direct way. In fact we use linear
labelings in both the protocol and the specification. However, the distribu-
tivity property of the probabilistic plus (which is based on the ability to hide
information from the scheduler) plays a crucial role in the proof of the testing
relation between the protocol and the specification.

Plan of the chapter The rest of the chapter is organized as follows: in
the next section we introduce some syntactic constructs for CCSσ processes
that are needed to model the PSE protocol. In Section 11.2 we illustrate the
Oblivious Transfer primitive, the Partial Secrets Exchange protocol (PSE), and
their encoding in CCSσ. In Section 11.3 we specify the fairness property and we
prove the correctness of PSE. In Section 11.4 we discuss related work, notably
the analysis of the PSE protocol using probabilistic model checking.

11.1 Syntactic extensions of CCSσ

In this section we add some constructs to CCSσ that are needed to model the
fair exchange protocol. Namely we add tuples, polyadic value passing and a
matching operator. These constructs are encoded in the pure calculus, so they
are merely “syntactic sugar”, they do not change the semantics of the calculus.

11.1.1 Creating and splitting tuples

Protocols often concatenate messages and split composed messages in parts.
We encode tuples of channels by replacing them with a single channel that
represents the tuple:

〈v1, . . . , vn〉 ∆= v

where v is the corresponding composed channel. We also allow the decompo-
sition of a tuple using the construct let 〈x1, . . . , xn〉 = v in P encoded as

let 〈x1, . . . , xn〉 = v in P
∆= P [v1/x1, . . . , vn/xn]

where v is the channel representing the tuple 〈v1, . . . , vn〉.

11.1.2 Polyadic value passing

We already discussed a way to use value passing in Section 10.4.1, using the
following encoding:

l :c(x).P ∆=
∑
v∈V lc :cv.P [v/x]

l : c̄〈v〉.P ∆= l :cv.P
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where V is the set of possible values that can be sent through channel c and
for each v ∈ V , cv is a distinct channel and lv is a distinct label. The goal in
Section 10.4.1 was to encode secret value passing, where the scheduler knows
that some value was transmitted in the channel but does not know which
one. For that reason we were using the same label l in all branches of the
nondeterministic plus. In this chapter we are not interested in hiding this
information so we use different labels for each branch.

We can pass polyadic values by using tuples. Let V1, . . . , Vn be the set of
values for the variables x1, . . . , xn respectively and V = V1 × . . . × Vn. We
encode polyadic value passing as follows:

l :c(x1, . . . , xn).P ∆= l :c(x).let 〈x1, . . . , xn〉 = x in P

=
∑
v∈V lv :cv.P [v1/x1, . . . , vn/xn]

Here v ∈ V is a composed channel representing the tuple 〈v1, . . . , vn〉. The
polyadic output is simply the output of the corresponding tuple.

Note that the substitution operator P [v/x] does not replace occurrences
of x that are bound in P by some other input or let..in construct Note also
that the encoding of value passing does not allow the use of free variables,
that is variables that are bounded by no input. Such variables will not be
substituted during the translation and the resulting process will not be a valid
CCSσ process.

11.1.3 Matching

Now that we can perform an input on a variable, we might need to test the value
that we received. This is the purpose of matching, denoted by the construct
[x = y]P . We encode it as follows:

[c = c]P ∆= P

[c = d]P ∆= 0 c 6= d

where c, d are channel names. If variables are used for matching then we need
first to substitute variables by channels following the encoding of value passing,
and then apply the encoding of matching. For example

c̄〈v〉 | c̄〈w〉 | c(x).([x = v]P | [x = w]Q) =
cv | cw | cv.([v = v]Pv | [v = w]Qv) + cw.([w = v]Pw | [w = w]Qw) =

cv | cw | cv.(Pv | 0) + cw.(0 | Qw)

where Pv = P [v/x], Pw = P [w/x] and similarly for Q.

11.1.4 Using extended syntax in contexts

We also allow the new syntactic constructs to be used in contexts in the fol-
lowing way. A context C[] with extended syntax denotes the pure context C ′[]
that is produced using the encodings. Note that the translation is only done
once for the context itself, so C[P ] denotes C ′[P ], P is not translated. However
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note that P cannot contain free variables, so if P ′ is the translation of P , then
the translation of C[P ] is equal to C ′[P ′].

Since extended contexts denote pure contexts then vmay,vmust are pre-
congruences also wrt extended contexts.

11.2 Probabilistic Security Protocols

In this section we discuss probabilistic security protocols based on the Oblivious
Transfer and we show how to model them using the CCSσ calculus.

11.2.1 1-out-of-2 Oblivious Transfer

The Oblivious Transfer is a primitive operation used in various probabilistic
security protocols. In this particular version a sender A sends exactly one of the
messages M1,M2 to a receiver B. The latter receives i and Mi where i is 1 or 2,
each with probability 1/2. Moreover A should get no information about which
message was received by B. More precisely the protocol OT 1

2 (A,B,M1,M2)
should satisfy the following conditions:

1. If A executes OT 1
2 (A,B,M1,M2) properly then B receives exactly one

message, (1,M1) or (2,M2), each with probability 1/2.

2. After the execution of OT 1
2 (A,B,M1,M2), if it is properly executed, for

A the probability that B got Mi remains 1/2.

3. If A deviates from the protocol, in order to increase his probability of
learning what B received, then B can detect his attempt with probability
at least 1/2.

It is worth noting that in the literature the reception of the index i by B
is often not mentioned, at least not explicitly ([EGL85]). However, omitting
the index can lead to possible attacks. Consider the case where A executes
(properly) OT 1

2 (M1,M1). Then B will receive M1 with probability one, but
he cannot distinguish it from the case where he receives M1 as a result of
OT 1

2 (M1,M2). So A is forcing B to receive M1. We will see that, in the case
of the PSE protocol, A could exploit this situation in order to get an unfair
advantage. Note that the condition 3 does not apply to this situation since this
cannot be considered as a deviation from the Oblivious Transfer. A generic
implementation of the Oblivious Transfer could not detect such behavior since
A executes OT properly, the problem lies only in the data being transferred.

Using the indexes, however, solves the problem since B will receive (2,M1)
with probability one half. This is distinguishable from any outcome of OT 1

2 (M1,
M1) so, in the case of PSE, B could detect that he’s being cheated. Imple-
mentations of the Oblivious Transfer do provide the index information, even
though sometimes it is not mentioned ([EGL85]). In other formulations of the
OT the receiver can actually select which message he wants to receive, so this
problem is irrelevant.

Encoding in CCSσ The Oblivious Transfer can be modeled in CCSσ using
a server process to coordinate the transfer, making it impossible to cheat. The
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PSE (A,B, {ai}i, {bi}i) {
for i = 1 to n do

OT 1
2 (A,B, ai, ai+n)

OT 1
2 (B,A, bi, bi+n)

next
for j = 1 to m do

for i = 1 to 2n do
A sends jth bit of ai to B

for i = 1 to 2n do
B sends jth bit of bi to B

next
}

Figure 11.1: Partial Secrets Exchange protocol

processes of the sender and the server are the following:

OT 1
2 (m1,m2, cas)

∆= cas〈m1〉.cas〈m2〉.0
S(cas, csb)

∆= cas(x1).cas(x2).(csb〈1, x1〉+0.5 csb〈2, x2〉)

where m1,m2 are the names to be sent. As in most cases in this chapter, we
omit the labeling assuming that a linear one is used. cas is a channel private to
A and S and csb a channel private to B and S. Each agent communicates only
with the server and not directly with the other agent. B receives the message
from the server (which should be in parallel with A and B) by making an input
action on csb.

It is easy to see that these processes correctly implement the Oblivious
Transfer. The only requirement is that A should not contain csb, so that he
can only communicate with B through the server.

11.2.2 Partial Secrets Exchange Protocol

This protocol is the core of three probabilistic protocols for contract signing,
certified email and coin tossing, all presented in [EGL85]. It involves two
agents, each having 2n secrets split in pairs, (a1, an+1), ..., (an, a2n) for A and
(b1, bn+1), ..., (bn, b2n) for B. Each secret consists of m bits. The purpose is to
exchange a single pair of secrets under the constraint that, if at a specific time
B has one of A’s pairs, then with high probability A should also have one of
B’s pairs and vice versa.

The protocol, displayed in Figure 11.1, consists of two parts. During the
first A and B exchange their pairs of secrets using OT 1

2 . After this step A
knows exactly one half of each of B’s pairs and vice versa. During the second
part, all secrets are exchanged bit per bit. Half of the bits received are already
known from the first step, so both agents can check whether they are valid.
Obviously, if both A and B execute the protocol properly then all secrets are
revealed.

The problem arises when B tries to cheat and sends incorrectly some of his
secrets. In this case it can be proved that with high probability some of the
tests of A will fail causing A to stop the execution of the protocol and avoid
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revealing his secrets. The idea is that, in order for B to cheat, he must send at
least one half of each of his pairs incorrectly. However he cannot know which
of the two halves is already received by A during the first part of the protocol.
So a pair sent incorrectly will have only one half probability of being accepted
by A, leading to a total 2−n probability of success.

Now imagine, as discussed in Section 11.2.1, that B executes OT 1
2 (B,A, bi,

bi), thus forcing A to receive bi. Now, in the second part, he can send all
{bi+n | 1 ≤ i ≤ n} incorrectly without failing any test. Moreover A cannot
detect this situation. If indexes are available A will receive (2, bi+n) with
probability one half and since he knows that bi+n is not the second half of the
corresponding pair he will stop the protocol.

Encoding in CCSσ In this paragraph we present an encoding of the PSE
protocol in the CCSσ calculus. First, it should be noted that the secrets ex-
changed by PSE should be recognizable, which means that agent A cannot
compute B’s secrets, but he can recognize them upon reception. Of course a
secret can be recognized only as a whole, no single bit can be recognized by
itself. To model this feature we allow B’s secrets to appear in A’s process, as
if A knew them. However we allow a secret to appear only as a whole (not
decomposed) and only inside a match construct, which means that it can only
be used to recognize another message.

The encoding is displayed in Figure 11.2, as usual the labeling is omitted
assuming a linear one. We denote by ai (resp. bi) the i-th secret of A (resp.
B) and by aij (resp. bij) the j-th bit of ai (resp. bi). ri is the i-th message
received by Oblivious Transfer and ki is the corresponding index.

The first part consists of the first 7 lines of the process definition. In this
part A sends his pairs using OT 1

2 , receives the ones of B and decomposes
them. To check the received messages A starts a loop of n steps, each of which
is guarded by an input action on qi for synchronization. During the i-th step,
the TestOT sub-process tests ri against bi or bi+n depending on the outcome
of the OT, that is on the value of ki. The testpairi channels are used to send
the needed values to the TestOT sub-process.

The second part consists of a loop of m steps, each of which is guarded by
an input action on sj . During each step the j-th bit of each secret is sent and
the corresponding bits of B are received in dij . Then there is a nested loop of
n tests controlled by the input actions on tij . Each test, performed by the Test
sub-process, ensures that B’s bits are valid. Test(i, j) checks the j-th bit of
the i-th pair. The bit received during the first part, namely rij , is compared to
dij or d(i+n)j depending on ki. If the bit is valid, an output action on ti+1j is
performed to continue to the next test. Again, the testbitij channels are used
to send the necessary values to the Test sub-process.

Finally, an instance of the protocol is an agent A put in parallel with servers
for all oblivious transfers:

I
∆= νcas1 . . . casn

νcsa1 . . . csan

(
A |

n∏
i=1

S(casi
, csbi

) | S(cbsi
, csai

)
)

the channels casi
and csai

are restricted to prevent B from communicating
directly with A without using the Oblivious Transfer.
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A
∆=

νtestpair1 . . . νtestpairn νtestbit11 . . . νtestbitnm

νq1 . . . νqn+1 νs1 . . . νsm+1 νt11 . . . νtn+1m∏n
i=1 OT 1

2 (ai, a(i+n), casi
) | Send half a pair by OT

csa1(k1, r1).let 〈r11, . . . , r1m〉 = r1 in . . . Receive half of each of B’s pairs

csan
(kn, rn).let 〈rn1, . . . , rnm〉 = rn in and decompose them in bits(

q1 | Loop over pairs (1 . . . n)∏n
i=1 qi. testpairi〈ki, ri〉 | Check i-th received pair

qn+1.(s1 | Loop over bits (1 . . .m)∏m
j=1 sj . cp〈a1j〉. . . . cp〈a(2n)j〉. Send j-th bit of all secrets

cp(d1j). . . . cp(d(2n)j). Receive j-th bit of all B’s secrets

(t1j | Check received bits∏n
i=1 tij . testbitij〈ki, rij , dij , d(i+n)j〉 |

tn+1j .sj+1) |
sm+1.ok )

) | Success. End of protocol∏n
i=1 TestOTspec(i) | Pair tests∏m
j=1

∏n
i=1 Testspec(i, j) Bit tests

TestOT (i) ∆= testpairi(k,w).([k = 1][w = bi] qi+1 | [k = 2][w = bi+n] qi+1)

Test(i, j) ∆= testbitij(k,w, x, y).([k = 1][w = x] ti+1j | [k = 2][w = y] ti+1j)

Figure 11.2: Encoding of PSE protocol

11.3 Verification of Security Properties

A well known method for expressing and proving security properties using
process calculi is by means of specifications. A specification Pspec of a protocol
P is a process which is simple enough in order to prove (or accept) that it
models the correct behavior of the protocol. Then the correctness of P is
implied by P ' Pspec where ' is a testing equivalence. The idea is that, if
there exists an attack for P , this attack can be modeled by a test O which
performs the attack and outputs ω if it succeeds. Then P should pass the test
and since P ' Pspec, Pspec should also pass it, which is a contradiction (no
attack exists for Pspec).

However, in case of probabilistic protocols, attacks do exist but only suc-
ceed with a very small probability. So examining only the ability of passing a
test is not sufficient since the fact that Pspec has an attack is no longer contra-
dictory. Instead we will use a specification which can be shown to have very
small probability of being attacked and we will express the correctness of P as
P vmay Pspec where vmay is the may-testing preorder defined in Section 10.3.
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Aspec
∆=

... same as the original protocol ...∏n
i=1 TestOTspec(i) | Pair tests

νguess1 . . . νguessn(∏m
j=1

∏n
i=1 Testspec(i, j) |

∏n
i=1(! guessi +0.5 0)

)
Bit tests

TestOTspec(i)
∆= testpairi(k,w).qi+1

Testspec(i, j)
∆= testbitij(k,w, x, y).([x = bij ][y = b(i+n)j ] ti+1j | guessi.ti+1j)

Figure 11.3: A specification for the PSE protocol

Then an attack of high probability for P should be applicable with at least the
same probability for Pspec which is contradictory. In this chapter we only use
may-testing so we will simply write v for vmay.

11.3.1 A specification for PSE

Let us recall the fairness property for the PSE protocol.

If B receives one of A’s pairs then with high probability A should
also be able to receive one of B’s pairs.

First, we must point out an important difference between this type of pro-
tocols and the traditional cryptographic ones. In traditional protocols both A
and B are considered honest. The purpose of the protocol is to ensure that
no outside adversary can access the messages being transferred. On the other
hand, in PSE the adversary is B himself, who might try to deviate from the
protocol in order to get A’s secrets without revealing his own.

As a consequence we will give a specification only for A, modeling his ideal
behavior under any possible behavior of B. The goal for A is to timely detect a
cheating attempt of B. A safe way to do this is to allow A to know in advance
the message that he is about to receive. Of course this is not realistic in practice
but this is typical when using specifications to prove security properties: we
model the ideal behavior, possibly in a non-implementable way, and we show
that the actual implementation is equivalent.

Knowing the real message, A can test whether each bit that he receives
is correct or not. However the tests should not be strict. Even if B is send-
ing incorrect data, the specification should accept it with a certain probability
because in the real protocol there is a non-zero (but small) probability of ac-
cepting incorrect data. Essentially, the specification models A’s behavior under
the most successful attack, that is an attack in which B can cheat with the
highest possible probability (which is still low enough).

The specification is displayed in Figure 11.3. It is the same as the original
protocol, except from the pair and bit tests. The pair test, performed by
TestOTspec, accepts all messages without really testing anything. On the other
hand, Testspec tests the incoming bits against the real ones (and not against
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the ones received by the OT as Test does). If both bits are correct they are
accepted. However, even if the bits are not correct they can be accepted if an
input on channel guessi is possible. This channel denotes the fact that B was
able to guess which part of pair i was received by A, thus he can send the other
part incorrectly without being detected. This should happen with probability
one half for each pair, which is modeled by the sub-process

∏n
i=1(!guessi+0.5 0)

that runs in parallel with the tests. Note that the guess is made once for each
pair, if succeeded then B can send all bits of the corresponding pair incorrectly
without being detected.

Note that in the specification the input from the Oblivious Transfer is not
used at all and since both bits are tested against the real ones we can be sure
that the specification can only be cheated to the extend allowed by guessi. In
the rest of this section we prove the correctness of PSE. To achieve that we
first show that the specification satisfies the fairness property. Then we prove
that the original protocol is smaller than the specification wrt the may-testing
preorder.

11.3.2 Proving the correctness of PSE

Correctness of the specification. First we show that the specification is
indeed a proper specification for PSE with respect to fairness. This means
that, if B does not reveal his secrets then A should reveal his own ones with
very small probability. So suppose that B wants to cheat and let l be the
maximum number of bits that B is willing to reveal for his secrets. Since one
pair is enough for A, B should send at least one of the first l + 1 bits of each
of his pairs incorrectly.

As we already discussed Aspec knows all the correct bits of B’s secrets and
he can test them when they are received. The sub-process Testspec(i, j) will
succeed with probability 1 if bij and b(i+n)j are sent correctly, but only with
probability 1/2 if not (since channel guessi is activated only with probability
1/2). If the test fails then the whole process stalls. Since incorrect bits will be
sent for all pairs in the first l + 1 steps, the total probability of advancing to
step l + 2 and reveal its l + 2 bits is 2−n.

This means that Aspec satisfies fairness. If B at some point of the protocol
has l bits of one of A’s pairs, then with probability at least 1 − 2−n A will
have l− 1 bits of at least one of B’s pairs. If l = m (B has a whole pair) then
A should have at least m − 1 bits and the last bit can be easily computed by
trying both 0 and 1. In other words B cannot gain an advantage of more than
one bit with probability greater than 2−n.

Relation between the protocol and the specification Having proved
the correctness of the specification with respect to fairness, it remains to show
its relation with the original protocol. An instance of the specification is a
process Aspec put in parallel with servers for all oblivious transfers:

Ispec
∆= νcas1 . . . νcasnνcsa1 . . . νcsan(

Aspec |
n∏
i=1

(S(casi , csbi) | S(cbsi , csai)
)
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PSE will be considered correct wrt fairness if:

I v Ispec
If I v Ispec holds then if I is vulnerable with high probability to an attack O,
then Ispec will be also vulnerable with at least the same probability. Since we
know that the probability of a successful attack for Ispec is very small, we can
conclude that an attack on I is very unlikely.

Theorem 11.3.1. PSE is correct with respect to fairness.

Proof. We want to prove that I v Ispec. The two processes differ only in the
definition of pair and bit tests. We define Iw to be the same as Ispec after
replacing TestOTspec with TestOTw and Testspec with Testw defined as:

TestOTw(i) ∆=

{
TestOTspec(i) if i < w

TestOT (i) if i ≥ w

Testw(i, j) ∆=

{
Testspec(i, j) if i < w

Test(i, j) if i ≥ w

The idea is that Iw behaves as the specification for the first w− 1 pairs and as
the original protocol for the other ones. First note that Ispec = In+1. Moreover
I1 is the same as I with the addition of the

∏n
i=1(! guessi +0.5 0) sub-process.

However, the guessi channels are restricted and never used (since no occurrence
of Testspec exists in I1) so it is easy to show that I ≈ I1. Then we can prove
the correctness of PSE by induction on w and it suffices to show that

Iw v Iw+1 ∀w ∈ {1..n} (11.1)

We will show that the relation (11.1) holds following a sequence of trans-
formations that respect the v preorder. Iw and Iw+1 differ only in the Test
sub-processes. Moreover TestOTw(i) and TestOTw+1(i) differ only for i = w,
for which we have:

TestOTw(w) = testpairi(k,w).
([k = 1][w = bi]qw+1 | [k = 2][w = bi+n]qw+1)

TestOTw+1(w) = testpairi(k,w).qw+1

Since k can only have one value, the one branch of TestOTw(w) will stall. So
TestOTw+1(w) is the same as TestOTw(w) except that it doesn’t test anything,
so it is easy to see that TestOTw v TestOTw+1.

Since v is a precongruence (Theorem 10.3.2) we can replace the TestOTw
sub-processes in Iw by TestOTw+1. Let K be the resulting process, we have
that Iw v K. Now K and Iw+1 differ only in the Testw processes and again
Testw(i, j) and Testw+1(i, j) differ only for i = w. However Testw(w, j) is not
smaller than Testw+1(w, j) so we cannot replace the first by the second.

In order to overcome this problem we notice that kw and rw were received
through the csaw

channel. Since this channel is restricted, rw must have been
transferred using the Oblivious Transfer server S(bsw, saw). This process re-
ceives two values x1, x2 and sends one of them, each with probability one half.
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Now let K ′, I ′w+1 be the processes obtained by K, Iw+1 respectively by replac-
ing x1, x2 in S(bsw, saw) by bw, bw+n. (that is by hard-coding the correct w-th
pair in the Oblivious Transfer). It is easy to see that K v K ′ since their only
difference are in the matches containing kw, rw and since K ′ contains the cor-
rect values the matches are at least as probable to succeed as in K. Moreover
I ′w+1 ≈ Iw+1 since both don’t use kw, rw at all. It is now sufficient to show
that K ′ v I ′w+1.

Now K ′ contains the modified OT server for the w-th pair

S(cbsw
, csaw

) = cbsw
(x1).cbsw

(x2).(csaw
〈1, bw〉+0.5 csaw

〈2, bw+n〉)
and it can be written in the form:

K ′ = ν(M |S(cbsw
, csaw

))

where ν denotes (for simplicity) the restriction on all OT channels. From the
distributivity of the probabilistic plus +p (Theorem 10.3.3) we have

K ′ ≈ ν(M |S(1, bw)) +0.5 ν(M |S(2, bw+n) where (11.2)
S(k,w) = cbsw

(x1).cbsw
(x2).csaw〈k,w〉

Now letM [] be the context obtained fromM by replacing the
∏m
j=1 Testw(w, j)

sub-process by a hole. We define

P1 =
m∏
j=1

testbitwj(k,w, x, y).[bwj = x]tw+1j

P2 =
m∏
j=1

testbitwj(k,w, x, y).[b(w+n)j = y]tw+1j

P1 contains all tests Testw(w, j) with 1, bwj hard-coded (that is the left-choice
of the OT server). Then ν(M |S(1, bw)) is may-equivalent to ν(M [P1]|S(1, bw))
(the latter has the values transmitted by the OT hard-coded) which in turn
is may-equivalent to ν(M [P1]|S(d, d)) (we replaced OT’s output by a dummy
message since it is hard-coded in M [P1]). We have the similar derivation for
M [P2], so from (11.2) we get

K ′ ≈ ν(M [P1]|S(d, d)) +0.5 ν(M [P2]|S(d, d))
= C[P1] +0.5 C[P2]

where C[] = ν(M []|S(d, d)).
K ′ and I ′w+1 differ only in the Testw sub-processes. Since Iw+1 doesn’t use

the output of the OT for the w-th pair at all, we can show that

I ′w+1 ≈ C[Q] where

Q = (
m∏
j=1

Testw+1(w, j)) | (!guessw +0.5 0)

=
m∏
j=1

testbitw,j(k,w, x, y).([x = bwj ][y = b(w+n)j ]tw+1j | guessw(x).tw+1j) |

(!guessw +0.5 0)
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So we finally have to show that

C[P1] +0.5 C[P2] v C[Q]

We start by showing that P1 +0.5 P2 v Q. P1, P2 can only perform tw+1j

actions. For a fixed j the probability of performing tw+1j depends on the value
that is passed (by a test O) through channel testbitwj . If it passes x = bwj and
y = b(w+n)j then the probability is 1, if only one of the two is passed then the
probability is 1/2 and if none is passed it is 0.

On the other hand Q has at least one half probability of performing tw+1j

since guessw is activated with probability one half. Moreover if x = bwj and
y = b(w+n)j then both tests of Q succeed and the probability of producing the
action is 1. Thus in all cases Q performs the actions with higher probability
than P1 +0.5 P2 so we have P1 +0.5 P2 v Q. Then since v is a precongruence
we have C[P1 +0.5 P2] v C[Q] and from the distributivity of +p we get

C[P1] +0.5 C[P2] ≈ C[P1 +0.5 P2] v C[Q]

which implies Iw v Iw+1.
We can finish the proof by induction on w.

The crucial part in the above proof is the use of the distributivity of the
probabilistic sum. This property allowed us to focus on small sub-processes to
prove that P1 +0.5P2 v Q, and then obtain the same relation after applying the
context. This shows the usefulness of the distributivity property as a technical
means to prove security properties.

11.4 Related Work

Security protocols have been extensively studied during the last decade and
many formal methods have been proposed for their analysis. However, the
vast majority of these methods refer to nondeterministic protocols and are not
suitable for the probabilistic setting, since they do not allow to model random
choices. One exception is the work of Aldini and Gorrieri ([AG02]), where they
use a probabilistic process algebra to analyze fairness in a non-repudiation
protocol. Their work is close to ours in spirit, although technically it is quite
different. In particular, we base our analysis on a notion of testing while theirs
is based on a notion of bisimulation.

With respect to the application, the results the most related to ours come
from Norman and Shmatikov ([NS03], [NS05]), who use probabilistic model
checking to study fairness in two probabilistic protocols, including the Partial
Exchange Protocol. In particular, in [NS05] they model the PSE using PRISM,
a probabilistic model checker. Their treatment however is very different from
ours: their model describes only the “correct” behavior for both A and B,
as specified by the protocol. B’s ability to cheat is limited to prematurely
stopping the execution, so attacks in which B deviates completely from the
protocol are not taken into account. Having a simplified model is important in
model checking since it helps overcoming the search state explosion problem,
thus making the verification feasible.

The results in [NS05] show that with probability one B can gain a one bit
advantage, that is he can get all m bits of a pair of A by revealing only m− 1
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bits of his. This is achieved simply by stopping the execution after receiving the
last bit from A. Moreover a method of overcoming the problem is proposed,
which gives this advantage to A or B, each with probability one half. Is is
worth noting that this is a very weak form of attack and could be considered
as negligible, since A can compute the last bit very easily by trying both 0 and
1. Besides a one bit advantage will always exist in contract signing protocols,
simply because synchronous communication is not feasible.

In our approach, by modeling an adversary as an arbitrary CCSσ process
we allow him to perform a vast range of attacks including sending messages,
performing calculations, monitoring public channels etc. Our analysis shows
not only that a one bit attack is possible, but more important that no attack
to obtain an advantage of two or more bits exists with non-negligible proba-
bility. Moreover our method has the advantage of being easily extensible. For
example, treating more sessions, even an infinite number of ones, can be done
by putting many copies of the processes in parallel.

Of course, the major advantage of the model checking approach, with re-
spect to ours, is that it can be totally automated.
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[Rén66] Alfred Rényi. On the amount of missing information and the
Neyman-Pearson lemma. In Festschriftf for J. Neyman, pages
281–288. Wiley, New York, 1966.

[Riv06] Ronald L. Rivest. The threeballot voting system. Technical
report, Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, 2006.

[Roy88] H. L. Royden. Real Analysis. Macmillan Publishing Company,
New York, third edition, 1988.

[RR98] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for
Web transactions. ACM Transactions on Information and System
Security, 1(1):66–92, 1998.

[RS01] Peter Y. Ryan and Steve Schneider. Modelling and Analysis of
Security Protocols. Addison-Wesley, 2001.

[SD02] Andrei Serjantov and George Danezis. Towards an information
theoretic metric for anonymity. In Roger Dingledine and Paul F.
Syverson, editors, Proceedings of the workshop on Privacy En-
hancing Technologies (PET) 2002, volume 2482 of Lecture Notes
in Computer Science, pages 41–53. Springer, 2002.

[Seg95] Roberto Segala. Modeling and Verification of Randomized Dis-
tributed Real-Time Systems. PhD thesis, Department of Elec-
trical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, June 1995. Available as Technical Report
MIT/LCS/TR-676.

[SGR97] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous
connections and onion routing. In IEEE Symposium on Security
and Privacy, pages 44–54, Oakland, California, 1997.

[Sha93] C. E. Shannon. Some geometrical results in channel capacity. In
Collected Papers of C.E. Shannon, pages 259–265. IEEE Press,
1993.

[Shm02] Vitaly Shmatikov. Probabilistic analysis of anonymity. In 15th
IEEE Computer Security Foundations Workshop (CSFW), pages
119–128, 2002.

[Shm04] V. Shmatikov. Probabilistic model checking of an anonymity sys-
tem. Journal of Computer Security, 12(3/4):355–377, 2004.

[SL95] Roberto Segala and Nancy Lynch. Probabilistic simulations for
probabilistic processes. Nordic Journal of Computing, 2(2):250–
273, 1995. An extended abstract appeared in Proceedings of CON-
CUR ’94, LNCS 836: 481-496.

189



Bibliography

[SS96] Steve Schneider and Abraham Sidiropoulos. CSP and anonymity.
In Proc. of the European Symposium on Research in Computer
Security (ESORICS), volume 1146 of Lecture Notes in Computer
Science, pages 198–218. Springer, 1996.

[SS99] Paul F. Syverson and Stuart G. Stubblebine. Group principals
and the formalization of anonymity. In World Congress on Formal
Methods (1), pages 814–833, 1999.

[SS00] Andrei Sabelfeld and David Sands. Probabilistic noninterference
for multi-threaded programs. In Proc. of CSFW 2000, pages 200–
214. IEEE Computer Society Press, 2000.

[SV04] A. Sokolova and E.P. de Vink. Probabilistic automata: system
types, parallel composition and comparison. In C. Baier, B.R.
Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors,
Validation of Stochastic Systems: A Guide to Current Research,
volume 2925 of Lecture Notes in Computer Science, pages 1–43.
Springer, 2004.

[SV06] Nandakishore Santhi and Alexander Vardy. On an improvement
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