
Bisimulation for demonic schedulers

Konstantinos Chatzikokolakis1?, Gethin Norman2, and David Parker2

1 Eindhoven University of Technology
2 Oxford Computing Laboratory

Abstract. Bisimulation between processes has been proven a success-
ful method for formalizing security properties. We argue that in certain
cases, a scheduler that has full information on the process and collabo-
rates with the attacker can allow him to distinguish two processes even
though they are bisimilar. This phenomenon is related to the issue that
bisimilarity is not preserved by refinement. As a solution, we introduce
a finer variant of bisimulation in which processes are required to sim-
ulate each other under the “same” scheduler. We formalize this notion
in a variant of CCS with explicit schedulers and show that this new
bisimilarity can be characterized by a refinement-preserving traditional
bisimilarity. Using a third characterization of this equivalence, we show
how to verify it for finite systems. We then apply the new equivalence to
anonymity and show that it implies strong probabilistic anonymity, while
the traditional bisimulation does not. Finally, to illustrate the usefulness
of our approach, we perform a compositional analysis of the Dining Cryp-
tographers with a non-deterministic order of announcements and for an
arbitrary number of cryptographers.

1 Introduction

Process algebra provides natural models for security protocols, in which non-
determinism plays an essential role, allowing to abstract from implementation
details ([1–3]). In this setting, security properties are often expressed as equiv-
alence between processes, with bisimulation being one of the most commonly
used. Its application takes two distinct forms. In the first one, a protocol P is
shown to be bisimilar to a specification Spec which can, it turn, be shown to
satisfy the required security property. From this, we conclude that the protocol
behaves in an equivalent way, and thus it also satisfies the property. An example
is the formalization of authenticity in [2], in which Alice sends a message m
and Bob wants to ensure that it receives m and not a different message sent by
some other agent. In the specification, we allow Bob to test the received mes-
sage against the real m (as if he knew it beforehand), thus the specification is
obviously correct. Showing that the protocol is bisimilar to the specification, we
conclude that Bob receives the correct message.
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The second form is substantially different: we establish a bisimulation relation
between two distinct instances of the protocol. From this, we conclude that the
instances are indistinguishable, that is an attacker cannot tell the difference when
observing one of them. This, in turn, means that the difference between the two
instances remains hidden from the attacker. An example of this approach is the
formalization of secrecy in [2]. If P (m) is a protocol parametrized by a message
m, and we show that P (m) ∼ P (m′), where ∼ denotes bisimilarity, it means that
the message m remains secret. Another example is the definition of privacy in
voting protocols ([4]). The votes of Alice and Bob remain private if an instance
of the protocol is bisimilar to the instance where Alice and Bob have exchanged
votes.

In this paper, we focus on the second usage of bisimulation and we argue
that, in the presence of a scheduler who has full view of the process, an attacker
could distinguish two processes despite being bisimilar. The reason is that, in
the definition of bisimulation, non-determinism is treated in a partially angelic
way. When P ∼ Q, the bisimulation requires that if P makes a transition α to
P ′, Q can also make a transition α to a Q′ with Q ∼ Q′ (and vice-versa). In this
definition, there are two implicit quantifiers, the second one being existential :

for all transitions P
α−→ P ′

there exists a transition Q
α−→ Q′ s.t. P ′ ∼ Q′

In other words, Q is not forced to simulate P , it only has the possibility to do it.
If we want P,Q to remain indistinguishable in the actual execution, we have to
count on the additional fact that the scheduler of Q will guide it in a way that
simulates P , that is the scheduler acts in favour of the process. This is, however,
in contrast to the traditional idea in security that the scheduler collaborates
with the attacker. If the scheduler in the implementation of Q chooses to do
something different, it can allow the attacker to distinguish the two processes.

Consider the following simple example: an agent broadcasts a message m
on a network which is received by the agents A and B. Each receiver then
acknowledges the reception, including his identity in the acknowledgement. We
could model this protocol as:

A = c(x).a B = c(x).b P (m) = (νc)(c̄〈m〉.c̄〈m〉 | A | B)

Clearly, P (m) ∼ P (m′), but does m remain secret? Both instances can perform
two visible actions, a and b, the order of which is chosen non-deterministically.
The indistinguishability of the two processes relies on the fact that the scheduler
of P (m′) will try to simulate P (m) by choosing the same order for the visible
actions. If, however, the scheduler for P (m) chooses a different order that the
one of P (m′), then we can distinguish m from m′ based on the output of the
protocol. This could be the case, for example, if an operation is performed upon
reception whose execution time is message dependent.

This consequence of angelic non-determinism can be also formulated in terms
of refinement. A process Q refines P if it contains “less” non-determinism. This
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can be formalized in different ways, two commonly used ones being trace in-
clusion and simulation. In this paper we adopt the latter: Q refines P if P
simulates Q. Then, the implementation of a protocol P is a refinement of it.
However, bisimulation is not preserved by this type of refinement, which means
that our security property might no longer hold in the refined version, an is-
sue that is sometimes called the “refinement paradox” ([5, 6]). In our previous
example, P (m) can be refined as (νc)(c̄〈m〉.c̄〈m〉 | c(x).a.c(x).b) and P (m′) as
(νc)(c̄〈m′〉.c̄〈m′〉 | c(x).b.c(x).a) leading to processes that can be distinguished.

Note that, in the first use of bisimulation, based on specifications, this issue
does not appear. The refinement P ′ of a process P might not be bisimilar to
the specification S but this is not a problem since we are not interested in
indistinguishability. On the other hand, P ′ will also be a refinement of S (since
P ∼ S) which is usually enough to guarantee the required security property.

Another problem with the angelic use of non-determinism appears in prob-
abilistic protocols. In this case, instead of traces we speak about distributions
over traces and security properties are defined on these distributions. For ex-
ample, strong probabilistic anonymity ([7]) requires the probability of any trace
to be the same under any sender. When non-determinism and randomization
are combined, trace distributions are defined after fixing a scheduler. Then, the
natural extension of such definitions is to quantify over all schedulers. However,
as we see in Section 6, a bisimulation between two senders does not imply strong
anonymity, and the reason is the angelic use of non-determinism.

It should be noted, however, that classical bisimulation does offer some con-
trol over non-determinism. Since it is closed under contexts, bisimilar processes
remain bisimilar when put in any environment. A context can act as a scheduler
by restricting the set of allowed actions. Thus, bisimulation is robust against
schedulers that can be expressed as contexts. However, a context cannot con-
trol the internal choices of a process, like the selection of the first receiver in
the above example. Of course, we could change the process to make this choice
external. However, in a big protocol with internal communication this becomes
challenging. Moreover, unless we make all choices external, the remaining non-
determinism will be treated in an angelic way, causing the problem with prob-
abilistic definitions explained above. Finally, in the context approach, it is not
possible to give some information to the scheduler, without making the corre-
sponding action visible, that is, without revealing it to an observer. This could be
useful, for example, to verify a protocol in which the scheduler, even if he knows
some secret information, has no possibility to communicate it to the outside.

In this paper we propose a different approach. We introduce a variant of
bisimulation in which the non-determinism is treated in a purely demonic way.
In principle, we would like to turn the existential quantifier into a universal one.
However, this is too restrictive and the resulting relation would not even be
reflexive. However, we can require Q to simulate an action α of P , not under
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any scheduler but under the same scheduler that produced α:

for all schedulers S, if P
α−→ P ′

then under the same scheduler S: Q
α−→ Q′ with P ′ ∼ Q′

Note that, in general, it is not possible to speak about the “same” scheduler
for two processes, since different processes have different choices. Still, this is
reasonable if the processes have a similar structure (which is the case when we
compare P (m) to P (m′)), in this paper we give a framework that allows to
formalize this concept. The idea in the above definition that we can choose each
scheduler that can break our property, however we are testing both processes
under the same one. This requirement is both realistic, as we are interested in
the indistinguishability of two processes when put in the same environment, and
strong, since it leaves no angelic non-determinism.

To formalize this definition, that we call demonic bisimulation, we use a
variant of probabilistic CCS with explicit schedulers, which was introduced in [8]
to study the information that a scheduler has about the state of a process. This
calculus allows us to speak of schedulers independently from processes, leading
to a natural definition of demonic bisimulation. Then, we discuss how we can
view a scheduler as a refinement operator that restricts the non-determinism
of a process. We define a refinement operator, based on schedulers, and we
show that demonic bisimilarity can be characterized as a refinement-preserving
classical bisimilarity, for this type of refinement. Afterwards, we give a third
characterization of demonic bisimilarity, that allows us to obtain an algorithm
to verify it for finite processes. Finally, we apply the demonic bisimulation to the
analysis of anonymity protocols. We show that demonic bisimulation, in contrast
to the classical one, implies strong probabilistic anonymity. This enables us to
perform a compositional analysis of the Dining Cryptographers protocol with a
non-deterministic order of announcements, showing that it satisfies anonymity
for an arbitrary number of cryptographers.

2 Preliminaries

In this section we recall some notions about probabilistic automata and CCS.

Probabilistic automata ([9]) A discrete probability measure over a set X
is a function µ : 2X 7→ [0, 1] such that µ(X) = 1 and µ(∪iXi) =

∑
i µ(Xi)

where Xi is a countable family of pairwise disjoint subsets of X. The set of
all discrete probability measures over X will be denoted by Disc(X). We will
denote by δ(x), x ∈ X (called the Dirac measure on x) the probability measure
that assigns probability 1 to {x}. We will also denote by

∑
i[pi]µi the probability

measure obtained as a convex sum of the measures µi.
A simple probabilistic automaton is a tuple (S, q,A,D) where S is a set of

states, q ∈ S is the initial state, A is a set of actions and D ⊆ S ×A×Disc(S)
is a transition relation. Intuitively, if (s, a, µ) ∈ D, also written s

a−→ µ, then
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ACT
α.P

α−→c δ(P )
RES

P
α−→c µ α 6= a, a

(νa)P
α−→c (νa)µ

SUM1
P

α−→c µ

P +Q
α−→c µ

PAR1
P

α−→c µ

P | Q α−→c µ | Q

COM
P

a−→c δ(P
′) Q

a−→c δ(Q
′)

P | Q τ−→c δ(P
′ | Q′)

REP
!a.P

a−→c δ(P | !a.P )

PROB P
i piPi

τ−→c

P
i [pi]δ(Pi)

Fig. 1. The semantics of CCSp. SUM1 and PAR1 have corresponding right rules SUM2
and PAR2, omitted for simplicity.

there is a transition from the state s performing the action a and leading to
a distribution µ over the states of the automaton. A probabilistic automaton
M is fully probabilistic if from each state of M there is at most one transition
available. An execution α of a probabilistic automaton is a (possibly infinite)
sequence s0a1s1a2s2 . . . of alternating states and actions, such that q = s0, and
for each i : si

ai+1−→ µi and µi(si+1) > 0. A scheduler of a probabilistic automaton
M = (S, q,A,D) is a function ζ : exec∗(M) 7→ D where exec∗(M) is the set
of finite executions of M , such that ζ(α) = (s, a, µ) ∈ D implies that s is the
last state of α. The idea is that a scheduler selects a transition among the ones
available in D and it can base its decision on the history of the execution. A
scheduler induces a probability space on the set of executions of M .

If R is a relation over a set S, then we can lift the relation to probability
distributions over S using the standard weighting function technique (see [9] for
details). If is an equivalence relation then the lifting can be simplified: µ1 R µ2

iff for all equivalence classes E ∈ S/R, µ1(E) = µ2(E). We can now define
simulation and bisimulation for simple probabilistic automata.

Definition 1. Let (S, q,A,D) be a probabilistic automaton. A relation R ⊆ S×
S is a simulation iff for all (s1, s2) ∈ R, a ∈ A: if s1

a−→ µ1 then there exists µ2

such that s2
a−→ µ2 and µ1 R µ2. A simulation R is a bisimulation if it is also

symmetric (thus, it is an equivalence relation). We define v,∼ as the largest
simulation and bisimulation on S respectively.

CCS with internal probabilistic choice Let a range over a countable set of
channel names. The syntax of CCSp is:

α ::= a | ā | τ prefixes
P,Q ::= a.P | P | Q | P +Q |

∑
i piPi | (νa)P | !a.P | 0 processes

The term
∑
i piPi represents an internal probabilistic choice, all the remaining

operators are from standard CCS. We will also use the notation P1 +p P2 to
represent a binary sum

∑
i piPi with p1 = p and p2 = 1 − p. Finally, we use
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I ::= 0 I | 1 I | ε label indexes

L ::= lI labels

P,Q ::= processes
L:α.P prefix
| P | Q parallel
| P +Q nondeterm. choice
| L:

P
i piPi internal prob. choice

| (νa)P restriction
| !L:a.P replicated input
| L:0 nil

S, T ::= scheduler
L.S schedule single action
| (L,L).S synchronization
| if L label test

then S
else S

| 0 nil

CP ::= P ‖ S complete process

Fig. 2. The syntax of CCSσ

replicated input instead of replication or recursion, as this simplifies the presen-
tation. Note that replication in CCS is not equally powerful as recursion, but
their difference is orthogonal to the goals of this paper. The semantics of a CCSp
term is a probabilistic automaton defined according to the rules in Figure 1. We
use −→c to distinguish the transitions of classical CCS from other transition
systems defined later in the paper. We also denote by µ | Q the measure µ′ such
that µ′(P | Q) = µ(P ) for all processes P and µ′(R) = 0 if R is not of the form
P | Q, and similarly for (νa)µ.

3 A variant of CCSp with explicit scheduler

In this section we present a variant of CCSp in which the scheduler is explicit,
in the sense that it has a specific syntax and its behaviour is defined by the
operational semantics of the calculus. This calculus was proposed in [8]; we will
refer to it as CCSσ. Processes in CCSσ contain labels that allow us to refer to a
particular sub-process. A scheduler also behaves like a process, using however a
different and much simpler syntax, and its purpose is to guide the execution of
the main process using the labels that the latter provides.

3.1 Syntax

Let a range over a countable set of channel names and l over a countable set of
atomic labels. The syntax of CCSσ, shown in Figure 2, is the same as the one of
CCSp except for the presence of labels. These are used to select the subprocess
which “performs” a transition. Since only the operators with an initial rule can
originate a transition, we only need to assign labels to the prefix and to the
probabilistic sum. We use labels of the form ls where l is an atomic label and
the index s is a finite string of 0 and 1, possibly empty. Indexes are used to
avoid multiple copies of the same label in case of replication. As explained in
the semantics, each time a process is replicated we relabel it using appropriate
indexes. To simplify the notation, we use base labels of the form l1, . . . , ln, and
we write ia.P for li :a.P .

6



ACT
l:α.P ‖ l.S α−→s δ(P ‖ S)

RES
P ‖ Sl

α−→s µ α 6= a, a

(νa)P ‖ Sl
α−→s (νa)µ

SUM1
P ‖ Sl

α−→s µ

P +Q ‖ Sl
α−→s µ

PAR1
P ‖ Sl

α−→s µ

P | Q ‖ Sl
α−→s µ | Q

COM
P ‖ l1

a−→s δ(P
′ ‖ 0) Q ‖ l2

a−→s δ(Q
′ ‖ 0)

P | Q ‖ (l1, l2).S
τ−→s δ(P

′ | Q′ ‖ S)

PROB
l:

P
i piPi ‖ l.S

τ−→s

P
i piδ(Pi ‖ S)

REP
!l:a.P ‖ l.S α−→s δ(ρ0P | !l:a.ρ1P ‖ S)

IF1
l ∈ tl(P ) P ‖ S1

α−→s µ

P ‖ if l then S1 else S2
α−→s µ

IF2
l /∈ tl(P ) P ‖ S2

α−→s µ

P ‖ if l then S1 else S2
α−→s µ

Fig. 3. The semantics of complete CCSσ processes. SUM1 and PAR1 have correspond-
ing right rules SUM2 and PAR2, omitted for simplicity.

A scheduler selects a sub-process for execution on the basis of its label, so
we use l.S to represent a scheduler that selects the process with label l and
continues as S. In the case of synchronization we need to select two processes
simultaneously, hence we need a scheduler of the form (l1, l2).S. We will use Sl
to denote a scheduler of one of these forms (that is, a scheduler that starts with
a label or pair of labels). The if-then-else construct allows the scheduler to test
whether a label is available in the process (in the top-level) and act accordingly.
A complete process is a process put in parallel with a scheduler, for example
l1 :a.l2 :b ‖ l1.l2. We define P, CP to be the sets of all processes and all complete
CCSσ processes respectively. Note that for processes with an infinite execution
path we need schedulers of infinite length. So, to be formally correct, we should
define schedulers as infinite trees, instead of using a BNF grammar.

3.2 Semantics for complete processes

The semantics of CCSσ is given in terms of a probabilistic automaton whose
state space is CP and whose transitions are given by the rules in Figure 3. We
denote the transitions by −→s to distinguish it from other transition systems.

ACT is the basic communication rule. In order for l :α.P to perform α, the
scheduler should select this process for execution, so the scheduler needs to be of
the form l.S. After this execution the complete process will continue as P ‖ S.
The RES rule models restriction on channel a: communication on this channel
is not allowed by the restricted process. We denote by (νa)µ the measure µ′

such that µ′((νa)P ‖ S) = µ(P ‖ S) for all processes P and µ′(R ‖ S) = 0 if R
is not of the form (νa)P . SUM1 models nondeterministic choice. If P ‖ S can
perform a transition to µ, which means that S selects one of the labels of P ,
then P +Q ‖ S will perform the same transition, i.e. the branch P of the choice
will be selected and Q will be discarded. For example:

l1 :a.P + l2 :b.Q ‖ l1.S
a−→s δ(P ‖ S)
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Note that the operands of the sum do not have labels, the labels belong to the
subprocesses of P and Q. In the case of nested choices, the scheduler must select
the label of a prefix, thus resolving all the choices at once.

PAR1, modelling parallel composition, is similar: the scheduler selects P to
perform a transition on the basis of the label. The difference is that in this case
Q is not discarded; it remains in the continuation. µ | Q denotes the measure µ′

such that µ′(P | Q ‖ S) = µ(P ‖ S). COM models synchronization. If P ‖ l1 can
perform the action a and Q ‖ l2 can perform ā, then (l1, l2).S can synchronize
the two by scheduling both l1 and l2 at the same time. PROB models internal
probabilistic choice. Note that the scheduler cannot affect the outcome of the
choice, it can only schedule the choice as a whole (this is why a probabilistic sum
has a label) and the process will move to a measure containing all the operands
with corresponding probabilities.

REP models replicated input. This rule is the same as in CCS, with the
addition of a re-labeling operator ρi. The reason for this is that we want to
avoid ending up with multiple copies of the same label as the result of replication,
since this would create ambiguities in scheduling as explained in Section 3.3. ρiP
appends i ∈ {0, 1} to the index of all labels of P , for example:

ρil
s :α.P = lsi :α.ρiP

and similarly for the other operators. Note that we relabel only the resulting
process, not the continuation of the scheduler: there is no need for relabeling the
scheduler since we are free to choose the continuation as we please.

Finally if-then-else allows the scheduler to adjust its behaviour based on
the labels that are available in P . tl(P ) gives the set of top-level labels of P and
is defined as:

tl(l :α.P ) = tl(l :
∑
i piPi) = tl(!l :a.P ) = tl(l :0) = {l}

and as the union of the top-level labels of all sub-processes for the other opera-
tors. Then if l then S1 else S2 behaves like S1 if l is available in P and as S2

otherwise.
A process is blocked if it cannot perform a transition under any scheduler. A

scheduler S is non-blocking for a process P if it always schedules some transition,
except when P itself is blocked.

3.3 Deterministic labelings

The idea in CCSσ is that a syntactic scheduler will be able to completely re-
solve the nondeterminism of the process, without needing to rely on a semantic
scheduler at the level of the automaton. To achieve this we impose a condition
on the labels of CCSσ processes. A labeling for P is an assignment of labels to
the subprocesses of P that require a label. A labeling for P is deterministic iff
for all schedulers S there is at most one transition of P ‖ S enabled at any time,
in other words the corresponding automaton is fully probabilistic. In the rest of
the paper, we only consider processes with deterministic labelings.
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A simple case of deterministic labelings are the linear ones, containing pair-
wise distinct labels (a more precise definition of linear labelings requires an extra
condition and can be found in [10]). It can be shown that linear labelings are
preserved by transitions and are deterministic. However, the interesting case is
that we can construct labelings that are deterministic without being linear. The
usefulness of non-linear labelings is that they limit the power of the scheduler,
since the labels provide information about the current state and allow the sched-
uler to choose different strategies through the use of if-then-else. Consider, for
example, the following process whose labeling is deterministic but not linear:

l :(1ā.R1 +p
1ā.R2) | 2a.P | 3a.Q (1)

Since both branches of the probabilistic sum have the same label l1, the scheduler
cannot resolve the choice between P and Q based on the outcome of the prob-
abilistic choice. Another use of non-linear labeling is the encoding of “private”
value passing:

l :c(x).P ∆=
∑
i l :cvi.P [vi/x] l : c̄〈v〉.P ∆= l :cv.P

This is the usual encoding of value passing in CCS except that we use the
same label in all the branches of the nondeterministic sum. To ensure that the
resulting labeling is deterministic we should restrict the channels cvi and make
sure that there is at most one output on c. For instance, the labeling of the
process (νc)(l1 : c(x).P | l2 : c̄〈v1〉) is deterministic. This way, the reception of a
message is visible to the scheduler, but not the received value.

4 Demonic Bisimulation

In the introduction, we showed that classical bisimulation treats non-determi-
nism in a partially angelic way. As a consequence, a scheduler that has full
control over a process can be used to distinguish two bisimilar processes. In this
section, we define a strict variant of bisimulation, called demonic bisimulation,
which treats non-determinism in a purely demonic way. We first define this
equivalence in terms of schedulers. Then, we change perspective and we view a
scheduler as a refinement operator. We show that demonic bisimilarity can be
characterized as a classical bisimilarity preserved under all refinements.

4.1 Definition using schedulers

An informal definition of demonic bisimulation was already given in the intro-
duction. P is demonic-bisimilar to Q, written P ∼D Q if:

for all schedulers S, if P
α−→ P ′

then under the same scheduler S: Q
α−→ Q′ with P ′ ∼D Q′

To define demonic bisimulation concretely, we need a framework that allows a
single scheduler to be used with different processes. CCSσ does exactly this: it
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gives semantics to P ‖ S for any process P and scheduler S (of course, S might
be blocking for some processes and non-blocking for others).

If µ is a discrete measure on P, we denote by µ ‖ S the discrete measure µ′

on CP such that µ′(P ‖ S) = µ(P ) for all P ∈ P and µ′(P ‖ S′) = 0 for all
S′ 6= S (note that all transition rules of Fig. 3 produce measures of this form).
We can now give a concrete definition of demonic bisimulation.

Definition 2 (Demonic bisimulation). An equivalence relation R on P is
a demonic bisimulation iff for all (P1, P2) ∈ R, a ∈ A and all schedulers S: if
S is non-blocking for P1 and P1 ‖ S

α−→ µ1 ‖ S′ then the same scheduler S is
non-blocking for P2 and P2 ‖ S

α−→ µ2 ‖ S′ with µ1 R µ2. We define demonic
bisimlarity ∼D as the largest demonic bisimulation on P.

Consider again the example of the introduction. We define:

A = 1c(x).2a B = 3c(x).4b P (m) = (νc)(5c〈m〉.6c〈m〉 | A | B)

Note that P (m), P (m′) share the same labels. This choice of labels states that
whenever a scheduler chooses an action in P (m), it has to schedule the same
action in P (m′). Then it is easy to see that P (m) ∼D P (m′). A scheduler that
selects A first in P (m) will also select A first in P (m′), leading to the same order
of actions. Under this definition, we do not rely on angelic non-determinism for
P (m′) to simulate P (m), we have constructed our model in a way that forces a
scheduler to perform the same action in both processes. Note that we could also
choose to put different labels in c〈m〉, c〈m′〉, hence allowing them to be scheduled
in a different way. In this case ∼D will no longer hold, exactly because we can
now distinguish the two processes using an if-then-else schedule who depends
on the message.

As a usual sanity check, we show that ∼D is a congruence.

Proposition 1. ∼D is closed under contexts.

4.2 Characterization using refinement

Another way of looking at schedulers is in terms of refinement. As discussed in
the introduction, a process Q refines P if it contains “less” non-determinism. A
typical definition is in terms of simulation: Q refines P if Q v P . For example,
a is a refinement of a+ b where the non-deterministic choice has been resolved.
Thus, a scheduler can be seen as a way to refine a process by resolving the non-
determinism. For example, l1 :a can be seen as the refinement of l1 :a+l2 : b under
the scheduler l1. Moreover, partial schedulers can be considered as resolving only
part of the non-determinism. For example, for the process 1a.(3c+ 4d) + 2b, the
scheduler l1 will resolve the first non-deterministic choice but not the second.

It has been observed that many security properties are not preserved by
refinement, a fact that is sometimes called the “refinement paradox”. If we define
security properties using bisimulation this issue immediately arises. For example,
a|b is bisimilar to a.b+ b.a but if we refine them to a.b and b.a respectively, they
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ϕ0(P ) = P (2)

ϕλ.S(λ:α.P ) = λ:α.ϕS(P ) (3)

ϕλ.S(P +Q) = ϕλ.S(P ) + ϕλ.S(Q) (4)

ϕλ.S((νa)P ) = (νa)ϕλ.S(P ) (5)

ϕl.S(l:
P
i piPi) = l:

P
i piϕS(Pi) (6)

ϕλ.S(P | Q) =

8>>>><>>>>:
λ:α.ϕS(P ′ | Q) if ϕλ(P )

α−→c δ(P
′)

λ:
P
i piϕS(Pi | Q) if ϕλ(P )

τ−→c

P
i[pi]δ(Pi)

λ:τ.ϕS(P ′ | Q′) if λ = (l1, l2) and

ϕl1(P )
a−→c δ(P

′), ϕl2(Q)
a−→c δ(Q

′)

(7)

ϕl.S(!l:a.P ) = l:a.ϕS(ρ0P | !l:: a.ρ1P ) (8)

ϕS(P ) =

(
ϕS1(P ) if l ∈ tl(P ) where S = if l then S1 else S2

ϕS2(P ) if l /∈ tl(P )
(9)

ϕS(P ) = 0 if none of the above is applicable (e.g. ϕl1(l2 :α.P ) = 0) (10)

Fig. 4. Refinement of CCSσ processes under a scheduler. The symmetric cases for the
parallel operator have been omitted for simplicity

are no longer bisimilar. Clearly, if we want to preserve bisimilarity we have
to refine both processes in a consistent way. In this section, we introduce a
refinement operator based on schedulers. We are then interested in processes
that are not only bisimilar, but also preserve bisimilarity under this refinement.
We show that this stronger equivalence coincides with demonic bisimilarity.

With a slight abuse of notation we extend the transitions −→c, that is the
traditional transition system for CCS, to CCSσ processes, by simply ignoring the
labels, which are then only used for the refinement. Let S be a finite scheduler
and P a CCSσ process. The refinement of P under S, denoted by ϕS(P ), is
a new CCSσ process. The function ϕS : P → P is defined in Figure 4. Note
that ϕS does not perform transitions, it only blocks the transitions that are not
enabled by S. Thus, it reduces the non-determinism of the process. The scheduler
might be partial: a scheduler 0 leaves the process unaffected (2). Thus, the
resulting process might still have non-deterministic choices. A prefix is allowed
in the refined process only if its label is selected by the scheduler (3), otherwise
the refined process is equal to 0 (10). Case (4) applies the refinement to both
operands. Note that, if the labeling is deterministic, at most one of the two will
have transitions enabled. The most interesting case is the parallel operator (7).
There are three possible executions for P | Q. An execution of P alone, of Q
alone or a synchronization between the two. The refined version enforces the one
selected by the scheduler (the symmetric cases have been omitted for simplicity).
This is achieved by explicitly prefixing the selected action, for example l1 :a | l2 :b
refined by l1 becomes l1 :a.(0 | l2 :b). If P performs a probabilistic choice, then
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we have to use a probabilistic sum instead of an action prefix. The case of !P
(8) is similar to the prefix (3) and the rest of the cases are self-explanatory.

The intention behind the definition of φS is to refine CCSσ processes. φS(P )
cointains only the choices of P that are selected by the scheduler S. We now
show that the result is indeed a refinement:

Proposition 2. For all CCSσ processes P and schedulers S: φS(P ) v P

Note that v is the simulation relation on P wrt the classical CCS semantics
−→c. Also, let ∼ be the bisimilarity relation on P wrt −→c. A nice property of
this type of refinement is that it allows to refine two processes in a consistent
way. This enables us to define a refinement-preserving bisimulation.

Definition 3. An equivalence relation R on P is an R-bisimulation iff for all
(P1, P2) ∈ R and all finite schedulers S: ϕS(P1) ∼ ϕS(P2). We denote by ∼R
the largest R-bisimulation.

Note that P1 ∼R P2 implies P1 ∼ P2 (for S = 0). Moreover ∼R requires P1, P2

to remain bisimilar under any refinement. Finally, we show that processes that
preserve bisimilarity under this type of refinement are exactly the ones that are
demonic-bisimilar.

Theorem 1. The equivalence relations ∼R and ∼D coincide.

5 Verifying demonic bisimilarity for finite processes

In the previous section we gave two characterizations of demonic bisimilarity
(Def. 2 and 3). They both, however, have the drawback of quantifying over all
schedulers. This makes the verification of the equivalence difficult, even for finite
state processes. To overcome this difficulty, we give a third characterization of
demonic bisimilarity. This one, is based on traditional bisimilarity on a modified
transition system, where labels annotate the performed actions. We then use this
characterization to adapt an algorithm for verifying probabilistic bisimilarity to
our settings.

5.1 Characterization using a modified transition system

In this section we give a modified semantics for CCSσ processes without sched-
ulers. The semantics are given by means of a simple probabilistic automaton
with state space P, displayed in Figure 5 and denoted by −→a to distinguished
from the transition system previously defined. The difference is that now the la-
bels annotate the actions instead of being used by the scheduler. Thus, we have
actions of the form λ:α where λ is l or (l1, l2), and α is a channel, an output on a
channel or τ . Note that, in the case of synchronization (COM), we combine the
labels l1, l2 of the actions a, a and we annotate the resulting τ action by (l1, l2).
All rules match the corresponding transitions for complete processes. Since no
schedulers are involved here, the rules IF1 and IF2 are completely removed.
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ACT
l:α.P

l:α−→a δ(P )
RES

P
l:α−→a µ α 6= a, a

(νa)P
l:α−→a (νa)µ

SUM1
P

l:α−→a µ

P +Q
l:α−→a µ

PAR1
P

l:α−→a µ

P | Q l:α−→a µ | Q

COM
P

l1:a−→a δ(P
′) Q

l2:a−→a δ(Q
′)

P | Q (l1,l2):τ−→ a δ(P
′ | Q′)

PROB
l:

P
i piPi

l:τ−→a

P
i piδ(Pi)

REP
!l:a.P

l:a−→a δ(ρ0P | !l:a.ρ1P )

Fig. 5. Semantics for CCSσ processes without schedulers. SUM1 and PAR1 have cor-
responding right rules SUM2 and PAR2, omitted for simplicity.

Note that, even if the labeling is deterministic, the probabilistic automaton
defined by the semantics without schedulers is not necessarily fully probabilis-
tic since multiple transitions might be enabled at the same time. However, all
transitions of a process will have pairwise distinct actions.

We can now characterize demonic bisimilarity using this transition system.

Definition 4. An equivalence relation R on P is an A-bisimulation iff

i) it is a bisimulation wrt −→a, and
ii) tl(P1) = tl(P2) for all non-blocked P1, P2 ∈ R

We define ∼A as the largest A-bisimulation on P.

Theorem 2. The equivalence relations ∼D and ∼A coincide.

Essentially, we have encoded the schedulers in the actions of the transition
system −→a. Thus, if two processes perform the same action in −→a it means
that they perform the same action with the same scheduler in −→s. Note that
the relation ∼A is stricter that the classical bisimilarity. This is needed because
schedulers have the power to check the top-level labels of a process, even if this
label is not “active”, that is it does not correspond to a transition. We could
modify the semantics of the if-then-else operator, in order to use the traditional
bisimilarity in the above theorem. However, this would make the schedulers less
expressive. Indeed, it can be shown ([8]) that for any semantic scheduler (that is,
one defined on the automaton) of a CCSp process P , we can create a syntactic
scheduler that has the same behaviour on P labeled with a linear labeling. This
property, though, is lost under the modified if-then-else.

5.2 An algorithm for finite state processes

We can now use ∼A to verify demonic bisimilarity for finite state processes. For
this, we adapt the algorithm of Baier ([11]) for probabilistic bisimilarity. This
algorithm works on partitions X = {S1, . . . , Sn} where S1, . . . , Sn are pairwise
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disjoint subsets of the (finite) state space S. It starts from the trivial partition
X0 = {S} and in each iteration updates the current partition X by possibly
splitting each set Si into parts. Two elements of Si are put in different sets if
there is a transition from each of them that assigns a different probability to
some set Sj ∈ X. This iteration is guaranteed to terminate, and the resulting
partition Xn is the set of equivalence classes of ∼.

In our case, the state space is the subset of P that it reachable from the given
processes, and is assumed to be finite. Moreover, we are interested in verifying∼A
which has the additional requirement that related non-blocked processes should
have the same set of top labels. One approach would be to take this requirement
into account when updating the partitions in the above algorithm. However, this
can actually be performed in a pre-processing step. Define an equivalence R as

(P,Q) ∈ R iff tl(P ) = tl(Q) or P,Q are blocked

Then we apply the above algorithm, starting from the partition X0 = S/R. The
elements of each set Si ∈ X0 have the same set of top-level labels (unless they
are blocked). Since each iteration only splits each set into parts, the elements
of a set Si ∈ Xn, where Xn is the resulting partition, will also have the same
top-level labels. Hence, it is easy to see that Xn will be the set of equivalence
classes of ∼A.

Similarly to the original algorithm, its complexity is O(n2 ·m) where n is the
number of states and m the number of transitions. An implementation of the
algorithm is available at [12] and has been used to verify some of the results of
the following section.

6 An application to security

In this section, we apply the demonic bisimulation to the verification of anonymity
protocols. First, we formalize anonymity in terms of equivalence between differ-
ent instances of the protocol. We then show that this definition implies strong
probabilistic anonymity, which was defined in [7] in terms of traces. This allows
us to perform an easier analysis of protocols by exploiting the algebraic proper-
ties of an equivalence. We perform such a compositional analysis on the Dining
Cryptographers protocol with non-deterministic order of announcements.

6.1 Probabilistic anonymity

Consider a protocol in which a set A of anonymous events can occur. An event
ai ∈ A could mean, for example, that user i performed an action of interest,
the purpose of the protocol is to keep such events hidden. The instance of the
protocol when ai occurs is modelled by the process Proti. Typically, the selection
of anonymous event is performed in the beginning of the protocol, for example a
user i decides to send a message, and then the protocol proceeds as Proti. Thus,
we model the protocol as

Prot
∆= l :

∑
i pi li :ai.P roti (11)

14



The protocol starts by selecting an anonymous event probabilistically (using any
distribution, the anonymity definition is independent of it). Then, the selection is
announced on the channel ai, this serves the purpose of keeping the information
about the selected event in the produced trace. Then the protocol continues as
Proti, which produces the events that the attacker can observe (of course, the
actions ai are not visible to the attacker). Define Tr(Prot) as the set of traces
produced by Prot (under any scheduler), note that they all are of the form aiω,
where ω is a sequence of visible actions of Proti. The goal of the attacker is to
deduce ai from ω, hence anonymity is provided if all anonymous events produce
traces with the same probability.

Definition 5 (strong probabilistic anonymity). A protocol Prot is anony-
mous iff for all schedulers S, all anonymous events ai, aj ∈ A and all traces
ω : pS(aiω|ai) = pS(ajω|aj) where pS is the probability distribution on Tr(Prot)
induced by the semantics of Prot ‖ S, and ai = {aiω|aiω ∈ Tr(Prot)}.

This is the definition of probabilistic anonymity given in [7], adapted to our
setting, and is a direct generalization of the definition for the purely probabilistic
case. We now give an alternative definition, based on demonic bisimulation.

Definition 6 (equivalence based anonymity). A protocol (of the form (11))
satisfies anonymity iff for all anonymous events ai, aj ∈ A : Proti ∼D Protj.

The idea behind this definition is that, if Proti, P rotj are demonic-bisimilar,
they should behave in the same way under all schedulers, thus producing the
same observation. Indeed, we can show that the above definition implies Def. 5.

Proposition 3. If Proti ∼D Protj for all i, j then the protocol satisfies strong
probabilistic anonymity (Def. 5)

It is worth noting that, on the other hand, Proti ∼ Protj does not imply
Def. 5, as we see in the next section.

6.2 Analysis of the Dining Cryptographers protocol

The problem of the Dining Cryptographers is the following: Three cryptogra-
phers dine together. After the dinner, the bill has to be paid by either one of
them or by another agent called the master. The master decides who will pay
and then informs each of them separately whether he has to pay or not. The
cryptographers would like to find out whether the payer is the master or one of
them. However, in the latter case, they wish to keep the payer anonymous.

The Dining Cryptographers Protocol (DCP) solves the above problem as
follows: each cryptographer tosses a fair coin which is visible to himself and his
neighbour to the right. Each cryptographer checks the two adjacent coins and,
if he is not paying, announces agree if they are the same and disagree otherwise.
However, the paying cryptographer says the opposite. It can be proved that the
master is paying if and only if the number of disagrees is even ([13]).

We model the protocol, for the general case of a ring of n cryptographers,
as shown in Figure 6. The symbols ⊕,⊗ represent the addition modulo n and
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CryptPi
∆
= 1,ici(coin1).2,ici(coin2).3,iouti〈coin1 ⊗ coin2〉

Crypti
∆
= 1,ici(coin1).2,ici, (coin2).3,iouti〈coin1 ⊗ coin2 ⊗ 1〉

Coini
∆
= l4,i :((

5,ic̄i〈0〉 | 6,ic̄i⊕1〈0〉) +0.5 (5,ic̄i〈1〉 | 6,ic̄i⊕1〈1〉))

Proti
∆
= (νc)(CryptPi |

Q
j 6=i Cryptj |

Qn−1
j=0 Coinj)

Fig. 6. Encoding of the dining cryptographers protocol

modulo 2 (xor) respectively. Crypti, CryptPi model the cryptographer i acting
as non-payer or payer respectively. Coini models the i-th coin, shared between
cryptographers i and i ⊕ 1. Finally, Proti is the instance of the protocol when
cryptographer i is the payer, and consists of CryptPi, all other cryptographers
as non-payers, and all coins. An external observer is supposed to see only the
announcements outi〈·〉. As discussed in [7], DCP satisfies anonymity if we ab-
stract from their order. If their order is observable, on the contrary, a scheduler
can reveal the identity of the payer to the observer by forcing the payer to make
his announcement first, or by selecting the order based on the value of the coins.

As we explained in the introduction, the angelic use of non-determinism is
problematic for definitions like Def. 5 that quantify over all schedulers. For the
DCP, we can show that Proti ∼ Protj for all i, j. However, this model does not
satisfy Def. 5, because a scheduler that depends its behaviour on the value of a
coin will lead to different traces.

In CCSσ we can be precise about the information that is revealed to the
scheduler. In the encoding of Fig. 6, we have used the same labels on both
sides of the probabilistic choice in Coini. As a consequence, after performing
the choice, the scheduler cannot use an if-then-else to find out which was the
outcome, so his decision will be independent of the coin’s value. Similarly, the
use of private value passing (see Section 3.3) guarantees that the scheduler will
not see which value is transmitted by the coin to the cryptographers. Then we
can show that for any number of cryptographers:

Proti ∼D Protj ∀1 ≤ i, j ≤ n (12)

For a fixed number of cryptographers, (12) can be verified automatically using
the algorithm of Section (5.2). We have used a prototype implementation to
verify demonic bisimilarity for a very small number of cryptographers (after
that, the state space becomes too big). However, using the algebraic properties
of simD we can perform a compositional analysis and prove (12) for any number
of cryptographers. Due to the limited space, this approach is described in the
appendix.

On the other hand, if we want to consider schedulers that can depend on the
coins, we can choose different labels on each side of Coini. This would violate
∼D, revealing that the protocol no longer satisfies strong anonymity.
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7 Related work

Various works in the area of probabilistic automata introduce restrictions to
the scheduler to avoid violating security properties ([14–16]). Their approach is
based on dividing the actions of each component of the system in equivalence
classes (tasks). The order of execution of different tasks is decided in advance
by a so-called task scheduler. The remaining nondeterminism within a task is
resolved by a second demonic schedule. In our approach, the order of execution
is still decided non-deterministically by a demonic scheduler, but we impose that
the scheduler will make the same decision in both processes.

Refinement operators that preserve various security properties are given in
[17, 18]. In our approach, we impose that the refinement operator should preserve
bisimilarity, obtaining a stronger equivalence.

In the probabilistic setting, a bisimulation that quantifies over all schedulers
is used in [19]. In this work, however, the scheduler only selects the action and
the remaining non-determinism is resolved probabilistically (using a uniform
distribution). This avoids the problem of angelic non-determinism but weakens
the power of the scheduler.

On the other hand, [20] gives an equivalence-based definition of anonymity
for the Dining Cryptographers, but in a possibilistic setting. In this case the
scheduler is clearly angelic, since anonymity relies on a non-deterministic selec-
tion of the coins. Our definition is the probabilistic counterpart of this work,
which was problematic due to the angelic use of non-determinism.

8 Conclusion and future work

We have introduced a notion of bisimulation where processes are required to
simulate each other under the same scheduler. We have characterized this equiv-
alence in three different ways: using syntactic schedulers in a variant of CCS,
using a refinement operator based on schedulers and using a modified transi-
tion system where labels annotate the actions. We have applied this notion to
anonymity showing that strong anonymity can be defined in terms of equiv-
alence, leading to a compositional analysis of the dining cryptographers with
non-deterministic order of announcements.

As future work, we want to investigate the effect of angelic non-determinism
to other process equivalences. Many of them are defined based on the general
schema: when P does an action of interest (passes a test, produces a barb, etc)
then Q should be able to match it, employing an existential quantifier. Moreover,
we would like to investigate models in which both angelic and demonic non-
determinism are present. One approach would be to use two separate schedulers,
one acting in favour and one against the process, along the lines of [21].
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A Proofs

We give here the proofs of the main results of the paper:

Definition 7. Let A,B be two countable sets, µ be a probability discrete measure
on A and f be a function from A to B. We define f(µ) as the discrete probability
measure on B such that

f(µ)({b}) = µ(f−1b)

Lemma 1. Let A,B be two countable sets, ∼A,∼B be two equivalence relations
on A,B respectively and f be a function from A to B such that a1 ∼A a2 ⇒
fa1 ∼B fa2,∀a1, a2 ∈ A. Also, let µ, κ be two discreate probability measures on
A. Then µ ∼A κ⇒ f(µ) ∼B f(κ).

Proof. Let [b]∼B , b ∈ B be an equivalence class of ∼B . If a ∈ f−1([b]∼B ) then
a′ ∈ f−1([b]∼B ) for all a′ ∼A a. Thus, for all equivalent classes C ∈ A/ ∼A we
have either C ⊆ f−1([b]∼B ) or C ∩ f−1([b]∼B ) = ∅. Let

Cb = {C ∈ A/ ∼A | C ⊆ f−1([b]∼B )}

we have

f(µ)([b]∼B ) = µ(f−1[b]∼B ) = µ(∪C∈CbC) =
∑
C∈Cb µ(C)

Thus, if µ ∼A κ then for all b ∈ B:

f(µ)([b]∼B ) =
∑
C∈Cb µ(C) =

∑
C∈Cb κ(C) = f(κ)([b]∼B )

which means that f(µ) ∼B f(κ).

Lemma 2. Let A,B be two countable sets, ∼A,∼B be two equivalence relations
on A,B respectively and {fi|i ∈ N} be a set of functions from A to B such that

∀a1, a2 ∈ A : (a1 ∼A a2 ⇔ ∀i ∈ N : fia1 ∼B fia2)

Also, let µ, κ be two discreate probability measures on A. Then µ ∼A κ ⇔ ∀i ∈
N : fi(µ) ∼B fi(κ).

Proof.

Lemma 3. Let P ∈ P be a process with a deterministic labeling and S a finite
scheduler other than 0. Then

P ‖ S α−→s µ ‖ S′

iff ϕS(P ) α−→c ϕS′(µ)

Proof. By Induction on (P, S), using a lexicographic combination of the sub-
process and sub-scheduler order. Cases (i)-(vi) assume that the scheduler is not
an if-then-else, the last case treats such schedulers. The two directions are
similar so we treat them together.
Base cases
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i) P = l : α.P ′: The scheduler must be of the form S = l.S′. Then P ‖ S
and ϕS(P ) = l :α.ϕS′(P ′) can both make a transition α to δ(P ′) ‖ S and
δ(ϕS′(P ′)) respectively.

ii) P = l :
∑
i piPi: The scheduler must be of the form S = l.S′ and ϕS(P ) =

l :
∑
i piϕS′(Pi). Then

P ‖ S τ−→s µ ‖ S′ µ =
∑
i [pi]δ(Pi)

ϕS(P ) τ−→c µ
′ µ′ =

∑
i [pi]δ(ϕS′(Pi))

and µ′(P ′) = µ(ϕ−1
S′ (P ′)) ∀P ′ follows.

iii) P =!l : a.P ′: similar to case (i)

Inductive cases:

iv) P = P1 + P2: Assuming that the transition P ‖ S α−→s µ ‖ S′ is gen-
erated by the SUM1 rule, then P1 ‖ S should be able to perform the
same transition. By the induction hypothesis we have ϕS(P1) α−→c µ

′ with
µ′(P ′) = µ(ϕ−1

S′ (P ′)) ∀P ′. Then, ϕS(P1)+ϕS(P2) can do the same transition
using the SUM1 rule. The case of SUM2 as well as the other direction are
similar.

v) P = (νa)P ′: similar to case (iv)
vi) P = P1 | P2: A transition of P is generated either by PAR1, PAR2 or COM

rule. Consider first PAR1 with S = λ.S′ and P1 ‖ λ.S′
α−→s δ(P ′1) ‖ S′.

Then, by induction hypothesis, ϕS(P1) α−→c δ(P ′1) and by definition of ϕ:
ϕS(P1 | P2) = λ : α.ϕS′(P ′1 | P2). Finally, the last process can make a
transition α to δ(ϕS′(P ′1 | P2)).
All the other cases (non-δ transition, PAR2, COM) are similar, as well as
the inverse direction.

vii) S = if l then S1 else S2. If P ‖ S α−→s µ ‖ S′ by the IF1 rule, then
l ∈ tp(P ) and P1 ‖ S

α−→s µ ‖ S′. Then by the induction hypothesis for
(P, S1) we have ϕS1(P ) α−→c µ

′ with µ′(P ′) = µ(ϕ−1
S′ (P ′)) ∀P ′. Finally by

the definition of ϕ we have ϕS(P ) α−→c µ
′. Similarly for IF2.

Theorem 1 The equivalence relations ∼R and ∼D coincide.

Proof. ⇒) We show that ∼D is an R-bisimulation. We need to show that

P ∼D Q ⇒ ϕS(P ) ∼ ϕS(Q) ∀P,Q (13)

for all finite schedulers S. The proof is by induction on the structure of S.
Base case S = 0:

ϕ0(P ) = P ∼ Q = ϕ0(Q)
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since ∼D⊆∼.
Inductive case: Let (P,Q) ∈∼D and let S be a finite scheduler. We have:

ϕS(P ) α−→c µ
′ ⇒

P ‖ S α−→s µ ‖ S′ ⇒ lemma 3

Q ‖ S α−→s κ ‖ S′ ⇒ P ∼D Q

ϕS(Q) α−→c κ
′ lemma 3

with

µ′(P ′) = µ(ϕ−1
S′ (P ′) ∀P ′ ∈ P

µ ∼D κ

κ′(Q′) = κ(ϕ−1
S′ (Q′) ∀Q′ ∈ P

Then, from the induction hypothesis for S′ (13) we get that the function ϕS′ :
P → P satisfies the conditions of lemma 1 where A = B = P, ∼A=∼D and
∼B=∼. From this we get µ′ ∼ κ, which implies that ϕS(P ) ∼ ϕS(Q)
⇐) We show that ∼R is a demonic bisimulation. We need to show that

P ‖ S α−→s µ ‖ S′ ⇒ Q ‖ S α−→s κ ‖ S′ with µ ∼R κ ∀(P,Q) ∈∼R

(P,Q) ∈∼R and let S be a non-blocking scheduler for P . Then P ∼

Theorem 2 The equivalence relations ∼D,∼A coincide.

Proof. First we notice that the rules of the semantics for complete processes,
except from IF1,IF2, closely match those of the semantics without schedulers.
Thus it is easy to see that

P ‖ l.S α−→ µ ‖ S ⇔ P
l:α−→a µ (14)

P ‖ (l1, l2).S α−→ µ ‖ S ⇔ P
(l1,l2):α−→ a µ (15)

⇐) We first show that ∼A is a demonic bisimulation. Let P1 ∼A and let S be a
non-blocking scheduler for P1 such that

P1 ‖ S
α−→ µ1 ‖ S′ (16)

We perform a case analysis on S:

i) S = l.S′. From (14),(16) we have that P1
l:α−→a µ1. Since P1 ∼A P2 we have

P2
l:α−→a µ2 with µ1 ∼A µ2. And again from (14): P2 ‖ S

α−→ µ2 ‖ S′.
ii) S = (l1, l2).S′. Similar to (i), using (15).
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iii) S starts with an arbitrary number of nested ifs. In this case only the IF1,IF2
rules are applicable and in the premises of the first IF rule applied we will
have a transition of the form

P1 ‖ Sl
α−→ µ1 ‖ S′

where Sl is a scheduler that does not start with an if. Now the cases (i),(ii)
apply, thus a transition P2 ‖ Sl

α−→ µ2 ‖ S′ with µ1 ∼A µ2 will be enabled.
Finally, since P1 ∼A P2 we have tl(P1) = tl(P2). Hence, the IF rules can be
applied in the same way for P2 giving a transition P2 ‖ S

α−→ µ2 ‖ S′.

This shows that ∼A is a demonic bisimulation, which means that ∼D⊇∼A.
⇒) We now show that ∼D is an A-bisimulation. Let P1 ∼D P2 and P1

l:α−→ µ1.

i) From (15) we have that P1 ‖ l.S
α−→ µ1 ‖ S. Since P1 ∼ P2 we have

P2 ‖ l.S
α−→ µ2 ‖ S with µ1 ∼D µ2 which in turn gives P2

l:α−→ µ2.
ii) We need to show that tl(P1) = tl(P2). Assuming otherwise, let l′ ∈ tl(P1) \

tl(P2). Then the scheduler if l′ then l else 0 produces a transition for P1

but not for P2 which violates the assumption P1 ∼D P2.

Similarly for the case P1
(l1,l2):α−→ µ1. This shows that ∼D is an A-bisimulation,

which means that
∼D⊆∼A, so finally we have ∼D=∼A. ut

Proposition 3 If Proti ∼D Protj for all i, j then the protocol satisfies strong
probabilistic anonymity (Def. 5)

Proof. Follows from the fact that the fully probabilistic automata Proti ‖ S and
Protj ‖ S will be probabilistically bisimilar, and that probabilistic bisimulation
implies the same distribution of traces.

Proposition 4. For any number of cryptographers, Proti ∼D Protj, where
Proti, P rotj are the processes defined in Figure 6.

Proof. (sketch) Define

Chaini,j
∆= Crypti | Coini | . . . | Coinj−1 | Cryptj

0i
∆= c̄i〈0〉

1i
∆= c̄i〈1〉

So 0i is the process that sends 0 to cryptographer i, and Coini = (0i | 0i⊕1)+0.5

(1i | 1i⊕1). First, we show that

0i | Crypti | 0i ∼D 1i | Crypti | 1i (17)
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which is expected, since cryptographer i outputs the xor of the two coins. This
equivalence could be also verified automatically. Then, by induction on j− i, we
can show that

0i | Chaini,j | 0j ∼D 1i | Chaini,j | 1j (18)
0i | Chaini,j | 1j ∼D 1i | Chaini,j | 0j (19)

The base case, i = j, is exactly (17). For the inductive case we have for (18):

0i | Crypti | Coini | Chaini+1,j | 0j
?∼D 1i | Crypti | Coini | Chaini+1,j | 1j

(20)
To establish this equivalence we look at the transitions of each side. The more
interesting case is a transition of Coini. With probability 1/2 the left-hand side
can perform a τ transition to

0i | Crypti | 0i | 0i+1 | Chaini+1,j | 0j ∼D
1i | Crypti | 1i | 1i+1 | Chaini+1,j | 1j by (17) and ind. hypothesis

which can be reached from the right-hand side of (20) by a τ transition with
probability 1/2. Similarly for the case that Coini is resolved to 1. Thus, transi-
tions go with the same probability to bisimilar processes, so we can show (20) by
constructing a proper bisimulation relation, which completes the proof of (18).
The case of (19) is identical.

Now we want to compare two instances of the protocol with different payers.
Assume, for simplicity that the payers are adjacent, say users 1 and 2. Then the
two instances to compare are

Prot1 = Coin0 | CryptP1 | Coin1 | Crypt2 | Coin2 | Chain3,n and
Prot2 = Coin0 | Crypt1 | Coin1 | CryptP2 | Coin2 | Chain3,n

We now show that

01 | CryptP1 | Coin1 | Crypt2 | 02 ∼D 11 | Crypt1 | Coin1 | CryptP2 | 12

01 | CryptP1 | Coin1 | Crypt2 | 12 ∼D 11 | Crypt1 | Coin1 | CryptP2 | 02

looking at the transitions of Coin1 and using the same argument as for (18),(19).
We then proceed with

01 | CryptP1 | Coin1 | Crypt2 | Coin2 | Chain3,n | 0n ∼D
11 | Crypt1 | Coin1 | CryptP2 | Coin2 | Chain3,n | 1n and
01 | CryptP1 | Coin1 | Crypt2 | Coin2 | Chain3,n | 1n ∼D
11 | Crypt1 | Coin1 | CryptP2 | Coin2 | Chain3,n | 0n

by examining the transitions of Coin2, and finally we do a case analysis on Coin0

and show that
Prot1 ∼D Prot2
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The advantage of working with an equivalence here is that we can show a prop-
erty of arbitrarily long chains of cryptographers ((18),(19)) and use this prop-
erty in bigger contexts. Note that, all the above equivalences hold only if the
“coin channels” ci in the corresponding processes are restricted (we omitted
the restriction to simplify the notation). Then, when we compose them to form
Prot1, P rot2 we have to move these restrictions to the outside of Prot1, P rot2.
This is however possible, since in all these processes (eg. those of (17)) the coin
channels appearing are not used by any other subprocesses of the protocol.

The case where the payers are not adjacent can be treated in a similar way,
this time using two chains of cryptographers.

Prot1 = Coin0 | CryptP1 | Coin1 | Chain1,i−1 | Coini−1 | Crypti | Coini | Chaini+1,n

Proti = Coin0 | Crypt1 | Coin1 | Chain1,i−1 | Coini−1 | CryptPi | Coini | Chaini+1,n

ut
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