
Formal verification of privacy for RFID systems

Mayla Brusó, Konstantinos Chatzikokolakis, and Jerry den Hartog

Eindhoven University of Technology

Abstract. RFID tags are being widely employed in a variety of applications,
ranging from barcode replacement to electronic passports. Their extensive use,
however, in combination with their wireless nature, introduces privacy concerns
as a tag could leak information about the owner’s behaviour. In this paper we
define two privacy notions, untraceability and forward privacy, using a formal
model based on the applied pi calculus, and we show the relationship between
them. Then we focus on a generic class of simple privacy protocols, giving suf-
ficient and necessary conditions for untraceability and forward privacy for this
class. These conditions are based on the concept of frame independence that we
develop in this paper. Finally, we apply our techniques to two identification pro-
tocols, formally proving their privacy guarantees.

1 Introduction

Radio Frequency Identification (RFID) systems are wireless technology for automatic
identification consisting of a set of tags, readers and a backend. The tags are typically
very simple devices consisting of a tiny chip and an antenna thus offering very limited
resources. The readers are connected with the backend which stores the valuable infor-
mation about the tags. The tags interact with the readers through identification protocols
which aim to get the identity of the tag to the backend system in a secure manner.

The wireless nature of RFID makes access to tags extremely easy. They are com-
monly used, for example, in supply chain management and are starting to make their
way into the consumer realm. One of the main issues that needs to be addressed to make
this possible it that of privacy: the fact that access to the tags is so easy also introduces
the potential of misuse. The tag’s ease of access allows them to be easily analyzed by
the attacker. Also, as the tag may travel with its owner, its location is already sensitive
information, thus an attack which does not identify a tag but does distinguish it from
other tags is already a problem. Finally, the resource constraints of the tags mean that
many security protocols cannot be used as the tag is not able to perform the required
cryptographic operations.

The problems identified lead to security goals of untraceability and forward privacy
for identification protocols. Untraceability states that an attacker is not able to trace the
movement of a tag, i.e. observing past events should not allow an attacker to distinguish
between tags. The stronger goal of forward privacy in turn becomes important when the
attacker may obtain the tag in question e.g. by stealing it or even simply buying the item
it is attached to. As the tags are simple devices, the attacker can likely break the tag to
obtain any information stored in it. Still, this should not enable the attacker to trace the
tag in retrospect, i.e. to learn its past locations.

P,Q,R ::= plain processes
0 null process
P | Q parallel composition
!P replication
νn.P restriction
if M = N then P else Q conditional
u(x).P message input
u〈N〉.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Fig. 1. Syntax of the applied pi calculus

Because of the resource constraints of the tags, hash functions, which are arguably
easy to compute, often play an important role in the identification protocols. Consider,
for example, the simple but effective OSK protocol ([1]): It assumes the tag can perform
two distinct one-way functions h and g. Each tag stores a secret which it shares with the
backend and the hash function h is used to update the secret at each run of the protocol
while g is used to ‘encrypt’ the output; the tag sends g(si), where si is its current secret
and then updates its secret si+1 = h(si). Intuitively this protocol meets our security
goals; the function g ensures that the output of the tag is random thus untraceable, and
updating the secret with h ensures that no past secrets or interactions can be found if
the tag is broken and secret si+1 is obtained by the attacker. But how can we formally
check this?

In this paper we introduce a formal model for RFID privacy, expressing untrace-
ability and forward privacy as equivalences in the applied pi calculus, and we show that
forward privacy is stronger. We then study a generic class of single step protocols, giv-
ing necessary and sufficient conditions for both properties. These conditions are based
on the notion of frame independence that we develop in Section 4. These results are
then employed to prove the privacy properties of the OSK protocol mentioned above,
as well as another protocol from the literature. We also show how alterations to this pro-
tocol cause flaws, breaking forward privacy or even untraceability. We conclude with
related and future work. The proof of all results is given in the appendix.

2 The applied pi calculus

The applied pi calculus ([2]) is a language for describing concurrent processes and their
interaction. It extends the pi calculus ([3]) adding the possibility to model cryptographic
primitives through a signature and an equational theory. In this section we briefly recall
its basic notions, for an extended description see [2].

The syntax consists of terms, plain processes and extended processes. A term is a
name (a, b, c, . . .), a variable (x, y, z) or a function application f(M1, . . . ,Ml), where f
is a function symbol from a signature Σ, M1, . . . ,Ml are terms and l is the arity of f .
Metavariables u, v, w are used for both names and variables. We denote by ñ, x̃, M̃ a
(possibly empty) sequence of names, variables and terms respectively. We writeM EN
iffM is a subterm ofN andM CN iffM EN andM 6= N . We also denote byM [N/x]
the term obtained by substituting N for x in M .

2

The syntax of processes is shown in Fig. 1. We have the standard primitives from
the π-calculus together with if-then-else and the possibility to output terms, instead of
simple names. Processes are extended with active substitutions which replace variables
with terms, modelling information known to the environment. We use fn(P), fv(P) to
denote the free names and variables of P , with restriction and input being considered
binders. An extended process is closed when its variables are bound or defined by an
active substitution. Finally, frames ranged over by ψ and ϕ, are extended processes
with no plain sub-process. A frame is in canonical form iff ϕ = νñ.{fM/ex} where
fv(M̃) = 0 and {ñ} ⊆ fn(M̃). The set {x̃} is called the domain of ϕ, written dom(ϕ).

The signature Σ is equipped with an equational theory, i.e. an equivalence relation
=E on terms that is closed under substitution of terms for variables. We also require
=E to be closed under one-to-one substitution of names. We write M =CN iff ∃M ′ :
M =EM

′CN andM =EN iff ∃M ′ : M =EM
′EN . The signature together with the

equational theory are used to model cryptographic primitives. For example, symmetric
encryption can be modelled using two function symbols enc,dec together with the
equation dec(enc(x, k), k) =E x. One-way hash functions can be modelled using a
unary function symbol h with no equations.

The operational semantics is defined by two relations: structural equivalence and
internal reduction. An evaluation context is an extended process with a hole replacing
an extended sub-process. Structural equivalence ≡ is the smallest equivalence relation
on extended processes that is closed by α-conversion on both names and variables, by
application of evaluation contexts, and satisfying some structural rules such as associa-
tivity and commutativity of | , binding-operator-like behaviour of ν, and:

A | 0 ≡ A νx.{M/x} ≡ 0 {M/x} | A ≡ {M/x} | A[M/x] {M/x} ≡ {N/x}

assuming M =EN . It can be shown that any frame ϕ is structurally equivalent to a
frame ϕ′ in canonical form. Internal reduction → is the smallest relation on extended
processes closed by structural equivalence and application of evaluation contexts s.t.:

ā〈x〉.P | a(x).Q→ P | Q
if M = M then P else Q→ P

if M = N then P else Q→ Q for any ground terms M and N s.t. M 6=EN

Several properties of security protocols can be formalised in terms of observational
equivalence between processes. We write A ⇓ a when A can send a message on a
channel a, that is, when A→∗ C[ā〈M〉.P] for some evaluation context C that does not
bind a.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that ARB implies:

1. if A ⇓ a then B ⇓ a.
2. if A→∗ A′ then B →∗ B′ and A′RB′ for some B′.
3. C[A]RC[B] for closing evaluation contexts C.

In [2], a labeled bisimilarity ≈l is defined and it is proven that ≈=≈l. Labeled bisimi-
larity is useful in proofs, since it is much easier to handle that observational equivalence.
Finally, static equivalence between frames is defined below.

3

Definition 2. Two terms M and N are equal in the frame ϕ, written (M = N)ϕ, iff
ϕ ≡ νñ.σ, Mσ = Nσ, and {ñ} ∩ {fn(M) ∪ fn(N)} = ∅ for some names ñ and
substitution σ.
Two closed frames ϕ,ψ are statically equivalent, written ϕ ≈s ψ, when dom(ϕ) =
dom(ψ) and when, for all terms M and N , we have (M = N)ϕ iff (M = N)ψ.

3 Formalization of RFID protocols and properties

In this section we discuss how to formalize RFID protocols and their privacy prop-
erties in the applied pi calculus. We focus on two privacy properties, untraceability
(also called indistinguishability, unlinkability or simply privacy, in various contexts)
and forward privacy. Roughly speaking, a protocol satisfies untraceability if the adver-
sary cannot link two sessions of the protocol to the same tag. For forward privacy, the
attacker is allowed to tamper a tag and retrieve the data stored in it. Forward privacy
is satisfied if the attacker cannot use the data to link the tag to past sessions, obtained
before tampering it.

Untraceability games. Privacy properties are typically defined by means of games in a
computational setting. Two similar types of games can be found in the literature. In the
first one, used in [4, 1, 5, 6], the untraceability game consists roughly of the following
phases: in the beginning the adversary can eavesdrop communications and query all
the tags and the readers in the system. Then a tag is chosen randomly from the set
{T0, T1} and the attacker is given access to it. She can then query {T0, T1} as well as
all other tags in the system. The game ends with the adversary announcing her guess of
the selected tag. The protocol satisfies untraceability if the adversary cannot detect the
selected tag with probability higher than random guessing.

A slightly different idea is used in the definition of unlinkability in [7] as well as the
one of privacy in [8]. In this game, the attacker is given access to two tags which can
be either independent or linked, meaning that by querying any of them the adversary
actually interacts with the same tag. She is then allowed to query these tags as well as
all the other tags and readers in the system. Untraceability is satisfied if the adversary
cannot distinguish the two cases with probability higher than random guessing.

Our definition, given in Section 3.2, is inspired by the second approach. In our
model, tags communicate with the environment through a tag interface. A protocol
satisfies untraceability if, given two interfaces that she can freely query, the attacker
cannot distinguish whether they correspond to the same or different tags. Similar games
can be also defined for forward privacy.

3.1 Modelling RFID protocols in the applied pi calculus

The applied pi calculus provides an elegant framework for modelling security proto-
cols, as it allows to specify both the interaction between the various agents, using the
communication primitives of the calculus, as well as the cryptographic operations, us-
ing a suitable equational theory. In this section we discuss the characteristic features of
RFID protocols and how to model them in the applied pi calculus.

4

An RFID system typically consists of several tags and one or more readers. The
readers might also communicate with a centralized backend database, typically through
a secure channel. An important property of most RFID protocols is that they are state-
ful, usually as a means to provide the same functionality to a stateless protocol but with
simpler cryptographic primitives. Tags have an internal memory which is often updated
after each execution of the protocol. Thus, in contrast to traditional stateless protocols,
a tag can send different data on each execution, even without the use of randomly gener-
ated nonces. All tags execute the same code and they are differentiated only from their
state, that is the content of their memory. Each tag typically has a unique secret s, also
known to the reader (through the backend database), which distinguishes it from other
tags and which allows the reader to identify it. The secret is generated either during the
tag’s creation or some initialization phase, and it is stored in the tag’s state. After that,
the secret is never transmitted by the tag in cleartext.

We model the tag’s state using a process running in parallel with the tag’s main code
and which can output the state’s content in a channel local to the tag. For clarity, we use
the process St(w,M) ∆= w〈M〉 to denote the state, where w is the restricted channel
used to read the state and M is the state’s content. Then, the tag reads the state using
an input w(x), and updates the state by putting back a St(w,M ′) subprocess at the end
of its execution. The tag uses also a public channel c to communicate with the reader.
We use P (w, c) to denote the process modelling a single session of the tag, with state
channel w and public channel c.

Finally, cryptographic primitives are modelled, as usual, using a signature and an
equational theory. The protocols analyzed in this paper use only one-way hash func-
tions. These are modelled using a unary function symbol h with no equations. As a
consequence, h is one-way (cannot be inverted) and collision free. We discuss hash
functions in more detail in Section 4.1. Other cryptographic primitives will require
proper equations, for example dec(enc(x, k), k) = x for symmetric encryption. Sev-
eral other cryptographic primitives are discussed in [2].

Example 1. As an example, we model the OSK protocol described in the introduction.
The protocol uses two hash functions, h and g, to update the secret and encrypt it
respectively. A tag sessoin in this protocol can be modelled as follows:

P (w, c) ∆= c().w(x).(c̄〈g(x)〉 | St(w,h(x)))

We use c() to denote an input on channel c with a variable not used anywhere in the
process. This input on c simply triggers the execution of the protocol and corresponds
to the reader asking “Who are you?”. Then the tag reads the current content of its state
using an input on its private channel w, and outputs the hash g of the current state on
the public channel c. Finally, it updates the state by continuing as St(w,h(x)), which
will be read at the next execution of the protocol. Note that this is the encoding of a
single tag session. The complete system will include other tags, the initial state of each
tag, the reader, etc., as discussed in the next section.

3.2 Defining untraceability and forward privacy
The idea behind our definition is inspired by the second type of untraceability game
discussed in Section 3. In our model, the attacker communicates with a tag through a

5

tag interface. Typically, this corresponds to the attacker obtaining proximity to the tag
and querying it wirelessly, but in general it can refer to any kind of access to the tag
that the attacker might obtain. An interface can be queried an arbitrary number of times
and each time the same tag is accessed. For example, an attacker can query a tag at the
entrance of a building multiple times, always interacting with the same tag. On the other
hand, multiple interfaces might provide access to the same tag. For example, an attacker
might see a tag at the entrance of building A and a tag at the entrance of building B.
This gives him two interfaces to communicate with a tag, however it could be either
the same tag in both cases or different ones. In other words, the attacker does not know
which physical tag she is accessing each time.

As discussed in the previous section, we denote by P (w, c) the process modelling
a single tag session. The channel c is a public channel that the tag uses to communicate
with the environment, in other words the tag’s interface. Since all tags execute the same
code, they are distinguished solely by their state. Consider P (w, c1) and P (w, c2). If w
is connected to the same state in both processes then we have two tag interfaces linked
to the same tag, otherwise they are two separate tags.

Let InitSt(w, s) be a process that initializes the tag’s state, where w is the channel
used to read the state and s is the unique secret of the tag. For example, the process
InitSt(w, s) ∆= n〈s〉.St(w, s) registers the secret to the database through a private
channel n and then stores s in the state. We define:

Tag(c) ∆= νw.νs.
(
!P (w, c) | InitSt(w, s)

)
Tag(c1, c2) ∆= νw.νs.

(
!P (w, c1) | !P (w, c2) | InitSt(w, s)

)
ReplTag

∆= ! νc.an〈c〉.Tag(c)

Tag(c) models a complete tag with interface c. It can perform an unbounded number
of protocol executions, starting from the initial state InitSt(w, s). Then Tag(c1, c2)
models a single tag (it contains a single state) but with two interfaces c1, c2. Finally
ReplTag models an unbounded number of tags, each with its own interface. To achieve
this, a new channel c is created by each replicated copy, then c is announced on the
public channel an to make it available to the outside environment. Let alsoReader,DB
be processes modelling the reader and the backend database, and let ñ contain any
private channels shared between all parties (eg. used to register a tag). We are now
ready to state our definition of untraceability.

Definition 3 (Untraceability). A protocol satisfies untraceability iff

νñ.(Tag(c1, c2) | ReplTag | Reader | DB) ≈
νñ.(Tag(c1) | Tag(c2) | ReplTag | Reader | DB)

Intuitively, this definition requires that the attacker cannot distinguish whether two in-
terfaces correspond to the same tag or two different tags. Note that the adversary is
not modelled explicitly, but she is considered part of the environment. Observational
equivalence guarantees that no environment will be able to distinguish these two cases.

Note that, because of ReplTag, the definition involves an unbounded number of
tags and interfaces. However, only two interfaces are linked to the same tag, all others

6

provide access to different tags. This is similar to the untraceability games in which
the attacker is provided with two tags to distinguish, even though there are arbitrarily
many tags in the system. A slightly different approach would be to link more interfaces
together, for example we could have a single tag in the left-hand side with an unbounded
number of interfaces. Studying this variation is left as future work.

Synchronization issues. Tags can only run one protocol session at a time. This is due to
the fact that the state needs to be updated before starting a new session. However, for
protocols with multiple steps, this can lead to a violation of untraceability. Consider the
following scenario: an attacker starts communicating with a tag using the interface c1
(eg. at location A). In the middle of the session she stops, leaving the tag in an inter-
mediate state. Later she accesses a tag using a different interface c2 (eg. at a different
location B) and tries to run the protocol again. If c2 corresponds to the same tag then
the protocol cannot start since the tag is in the middle of the previous session. If it
is a different tag then it can start the protocol normally. Thus, the attacker can decide
whether c1, c2 correspond to the same tag or not, violating untraceability.

This type of attacks is captured by our definition of untraceability. Tag(c1) | Tag(c2)
can always run two sessions on c1 and c2 in parallel, since the tags are independent.
However, Tag(c1, c2) might not be able to do so. If the first session does not update the
state immediately, the second will block when it tries to read it. In practise, however,
this type of attacks might be prevented by some property of the tag that we do not want
to model explicitly. For example, a passive tag (without battery) will switch off when
the tag is moved away from the reader, and before the attacker is able to start a session
on a different interface. Similarly, the tag might be programmed to run each session
for a small amount of time, and then switch off automatically. In such cases, we would
like to restrict our attacker model to enforce that a session on the c1 interface needs to
finish before a session on c2 can start, and vice versa. This can be easily achieved using
a token t that is consumed by Tag(c1), Tag(c2) in the beginning of an execution, and
put back at the end. Thus t acts like a semaphore preventing simultaneous executions.
Note that only c1, c2 need to be synchronized, the rest of the tags can remain unaltered.
We use this technique in Section 5.

Forward privacy. The forward privacy property is modelled in the same way as un-
traceability, but the adversary is given a further ability: she is now able to break one of
the two tags he is given and retrieve the information stored in its state. After that, the tag
clearly becomes traceable. However, forward privacy requires that the attacker is still
unable to trace protocol sessions that happened before breaking the tag. To capture this
notion, once the tag is broken the interfaces c1, c2 cannot be used any longer. Thus the
attacker can only use information obtained in past sessions to distinguish the two cases.
She can still, however, communicate with all the other tags of the system. We define:

BrTag(c1, c2) ∆= νw.νs.
(
!P (w, c1) | !P (w, c2) | InitSt(w, s) | br().w(x).br〈x〉

)
Tag(w, c) ∆= νs.

(
!P (w, c) | InitSt(w, s)

)
TwoTags(c1, c2) ∆= νw1.νw2.

(
Tag(w1, c1) | Tag(w2, c2) | br().w1(x).w2().br〈x〉

)
7

BrTag(c1, c2) models a breakable tag with two interfaces. It is similar to Tag(c1, c2)
with the addition of the br action. Once triggered, the content of the state is read and
sent back to the attacker on the public channel br. Note that reading the state ensures
that any active session is finished. The state is not replaced, rendering the interfaces
c1, c2 unusable since any query on them will lead to an attempt to read the state and the
process will be blocked. Tag(w, c) is the same as Tag(c) with the exception that w is
not restricted so that it can be used from an outer process. Finally, TwoTags(c1, c2)
models two independent breakable tags. It is similar to Tag(c1) | Tag(c2) with the
addition of the br action. Once triggered, the content of both states is read. This ensures
that both tags have finished any active session. The state of the first tag is then sent to
the attacker and the second is discarded. The states are not restored thus deactivating
both c1, c2. We can now state the definition of forward privacy.

Definition 4 (Forward Privacy). A protocol satisfies forward privacy iff

νñ.(BrTag(c1, c2) | ReplTag | Reader | DB) ≈
νñ.(TwoTags(c1, c2) | ReplTag | Reader | DB)

The definition is similar to the one of untraceability: an adversary should not be able
to distinguish a tag with two interfaces from two separate tags. The difference is the
possibility to break one of the tags and read its state, but without querying the two tags
any longer. It is clear that this extra ability makes this definition stronger.

Proposition 1. Forward privacy (Def 4) implies untraceability (Def 3).

4 Frame independence

In this section we discuss a notion that we call frame independence. As shown in Sec-
tion 5, this concept can be used to give sufficient and necessary conditions for untrace-
ability and forward privacy for a generic family of protocols. Nevertheless, the notion
itself is generic, hence we develop it on its own, proving some results that will be used
later in the paper.

Consider two frames ϕ1, ϕ2, each containing some free names. We provide both
frames to the attacker, after restricting these names. The attacker’s goal is to decide
whether the terms in both frames contain the same restricted names s̃, or different. If
the attacker is able to distinguish the two cases we say that ϕ1, ϕ2 are dependent wrt s̃,
otherwise they are independent. Intuitively, two frames being dependent means that the
attacker can link them to the same owner due to the use of the same restricted names s̃.
We formalize this idea in the following definition.

Definition 5. Let ϕ1 and ϕ2 be closed frames with dom(ϕ1) ∩ dom(ϕ2) = ∅. We
say that ϕ1 is independent of ϕ2 with respect to the names s̃, written ϕ1 ⊥es ϕ2, iff
νs̃.(ϕ1 | ϕ2)≈s νs̃.ϕ1 | νs̃.ϕ2.

Intuitively, this definition states that ϕ1, ϕ2 are independent wrt to s̃ iff their composi-
tion under the same restricted names s̃ is statically equivalent to simply putting them
in parallel, each with their own restricted names. The definition is vaguely reminiscent

8

of the independence of probability events, p(A ∧ B) = p(A)p(B), which requires that
the joint distribution (in our case composition with shared names) is obtained by simply
multiplying the marginal distributions (in our case putting in parallel the two frames).

We now state some basic properties of frame independence.

Proposition 2. Let ϕ1, ϕ2, ψ be closed frames such that ϕ1 ⊥es ψ. If one of the follow-
ing holds:

1. ϕ2≈s ϕ1

2. ϕ2 ≡ ϕ1 | ϕ′1 for some ϕ′1 with {s̃} ∩ fn(ϕ′1) = ∅ and dom(ϕ′1) ∩ dom(ψ) = ∅
3. ϕ2 ≡ νu.ϕ1 for some u /∈ fv(ψ) ∪ fn(ψ)

then ϕ2 ⊥es ψ.

The second part of the above proposition says that we can extend a frame ϕ1 while
preserving independence. An extended frameϕ2 adds new terms to the ones exported by
ϕ1, but these terms can be constructed from ϕ1. The new terms can contain restricted
names of ϕ1, but only if they are contained in some term already present in ϕ1. For
example, ϕ2 = νn.{f(n)/x,

g(f(n))/y} is an extension of ϕ1 = νn.{f(n)/x} since ϕ2 ≡
ϕ1 | {g(x)/y}. Reciprocally, the third part says that we can restrict ϕ1 to a subset of the
exported terms, while preserving independence. Moreover, we can restrict some free
names of ϕ1, provided that they are not free in ψ, and still preserve independence.

4.1 Independence of hash functions

One-way hash functions are commonly used in RFID protocols. Indeed, both protocols
analyzed in this paper use solely hash functions as cryptographic primitive. In this sec-
tion we give some results concerning the independence of frames using hash functions.

In the applied pi calculus, hash functions are typically modelled by a unary function
symbol h with no equational axioms. Still, hash functions can be combined with other
cryptographic primitives with their own axioms, so we might end up with an equational
theory with an arbitrary set of axioms, the only condition being that they should not
contain h. To use this fact in proofs, we should find properties of hash functions that
hold under any such theory. In fact, seeking even more generality, we can pose the
question of what it means for the function symbol h to be a hash function in an arbitrary
equational theory =E, independently from how =E is generated. We begin by giving
such a definition which will then be used in proofs involving hash functions.

We fix an equational theory =E, letM,K,L be terms and let h a unary function. We
define M [L/h(=K)] as the substitution of h-terms equal to h(K) by L. More precisely:

M [L/h(=K)] =


M if M = x or M = n

f(M1[L/h(=K)], . . . ,Ml[L/h(=K)]) if M = f(M1, . . . ,Ml), f 6= h
h(M1[L/h(=K)]) if M = h(M1),M1 6=EK

L if M = h(M1),M1 =EK

Note that this is different from M [L/h(K)] which replaces exact occurrences of h(K).

9

Definition 6. We say that a unary function h is a one-way hash function wrt =E iff

K =E L ⇒ K[x/h(=M)] =E L[x/h(=M)]

for all terms K,L,M and variables x.

A standard way to construct such an equational theory is using a finite set of axioms
that do not contain h. The idea of this definition is that h could appear in an equation
K =E L but only as a “generic term”, the equation should not depend on the fact that
h(M) is a hashed value. The following lemma shows that hash functions behave as
expected.

Lemma 1. Let h be a hash function (Def. 6) and assume that =E does not equate all
terms. Then

1. h is collision-free, that is h(M) =E h(N)⇒M =EN .
2. if h(M) =EN then there exists h(N ′) EN s.t. N ′=EM
3. there is no equation that inverts h, i.e. invh(h(x)) =E x
4. there is no equation that checks a hashed value, i.e. checkh(M) =E ok iffM =E h(M ′).

We are now ready to give a generic result, showing a sufficient condition for the
independence of frames containing hashed terms.

Theorem 1. Let h1, . . . ,hk,g1, . . . ,gl be hash functions (Def. 6), not necessarily dis-
tinct, and let

ϕ1 = {h1(S1)/x1 , . . . ,
hk(Sk)/xk} ϕ2 = {g1(T1)/y1 , . . . ,

gl(Tl)/yl}

be frames in canonical form. Assume that hi(Si) 6=E gj(Tj) and gj(Tj) 6=E hi(Si) for
all 1 ≤ i ≤ l, 1 ≤ j ≤ m. Then ϕ1 ⊥es ϕ2 for all names s̃.

5 Analysis of a generic class of protocols

In this section we focus on a class of protocols that we call “single step” identification
protocols. The main characteristic of this class is that each protocol session contains a
single message sent from the tag to the reader. The tag is first activated by the reader,
without however receiving any information. Then, the tag reads its state, constructs a
proper message, possibly containing fresh nonces, and sends it to the reader. This mes-
sage alone should be sufficient for the reader to identify the tag. Finally, the tag updates
its state and the session ends. The simplicity of such protocols will help us understand
the fundamental properties needed to satisfy untraceability and forward privacy. Still,
as we will see in the next section, two published protocols fall in this class.

We first introduce some notation to simplify the presentation. Let π(x) denote a
term containing a single free variable x (possibly with multiple occurrences). We define
π(M) = π(x)[M/x] which allows us to use function notation, for example π(π(M)) =
π(x)[π(x)[M/x]/x]. We also write πn(M) for π(. . . π(M)), n times. To define our class
of protocols, we instantiate the Tag processes of Section 3.2, which corresponds to
instantiating P (w, c) and InitSt(w, s).

10

Definition 7. The class of single step protocols consists of all protocols of the form:

P (w, c) ∆= c().t().w(x).νρ̃. c〈π(x)〉.
(
St(w, σ(x)) | t〈 〉

)
InitSt(w, s) ∆= St(w, S0)

for some terms π(x), σ(x), S0 and channels ρ̃ s.t. s /∈ fn(π(x)) ∪ fn(σ(x)).

The term π(x) is the output of a tag when x is its current state, and it can contain
the restricted names ρ̃ (this corresponds to generating fresh nonces). Similarly, σ(x)
is the new state of the tag after the execution. For simplicity, we assume that {ρ̃} ∩
fn(σ(x)) = ∅, i.e. fresh nonces are only transmitted, not stored in the state. Finally,
S0 is the initial content of the state, and it could contain the name s, which is the tag’s
secret. Note that any signature with any equational theory can be used for these terms.

InitSt(w, s) simply initializes the state with S0. P (w, c) starts with an input on c,
which simply triggers the beginning of the session. Then, we use the token technique
described in Section 3.2 for synchronization. This aims at simplifying the proofs, even
though it is not strictly needed for any of the results in this section. The tag consumes the
token t and reads its state in x. Finally it outputs π(x) and updates the state with σ(x).
For this class of protocols, the readers are completely passive, they only trigger the tag
without sending any data to it. Since c is a public channel, the tag can be triggered by
any process in parallel to it, thus we can completely avoid specifying the reader. So, to
complete the instantiation of all processes of Def. 3, we set Reader = DB = 0 and
ñ = ε.

Untraceability. Clearly not all single step protocols satisfy untraceability. We start by
identifying the possible reasons for violating it. The simplest case is when the i-th and j-
th sessions of a tag can be distinguished. Note that a tag outputs π(σi(S0)) on it’s (i+1)-
th session. Consider the extreme case where π(σi(S0)) = i (eg. let S0 = 0, σ(x) =
x + 1, π(x) = x). This gives the information to the attacker of how many sessions the
protocol has run so far. Now the attacker can simply run a session on c1 followed by
a session on c2. If the interfaces correspond to the same tag, the second session will
output 2, otherwise it will output 1, allowing the attacker to easily distinguish the two
cases.

To simplify the notation we define ρxM
∆= νρ̃.{M/x}, that is ρx turns a term into a

frame. We then define the following property.

Definition 8. A single-step protocol satisfies P1 iff

νs.ρxπ(σn(s)) ≈s νs.ρxπ(σm(s)) ∀n,m ∈ N

Intuitively, P1 requires that the tag’s output on different sessions is indistinguishable.
This prevents the simple attack discussed above but is still not sufficient for untraceabil-
ity. Consider another extreme case where π(σi(S0)) = s (eg. S0 = s, π(x) = σ(x) =
x). This satisfies P1 since the output does not depend on i. However untraceability is
clearly violated since the tag’s secret is sent in cleartext. Running two sessions on c1, c2
the attacker will get s1, s2 if the interfaces correspond to different tags, otherwise s, s.
Protecting the secret with a hash, i.e. π(σi(S0)) = h(s) does not help either. Run-
ning two sessions on c1, c2 will give h(s1),h(s2) in the first case and h(s),h(s) in the

11

second, which can be also distinguished. Indeed, it is clear that if the output on every
session is constant, untraceability will always be violated. But even a variable output is
no guarantee: consider a single step protocol with π(σi(S0)) = hi+1(s). Running two
sessions on c1, c2 will give x1 = h(s1), x2 = h(s2) in the case of two independent
tags and x1 = h(s), x2 = h2(s) in the case of a single tag. By checking h(x1) = x2

the attacker can distinguish once again the two cases.
The common problem behind these attacks is that the output of two different ses-

sions can be linked through the use of the common name s. The solution lies exactly in
the notion of frame independence, which brings us to the definition of the property P2.

Definition 9. A single-step protocol satisfies P2 iff

n−1∏
i=0

ρxiπ(σi(s)) ⊥s ρxnπ(σn(s)) ∀n ∈ N

Intuitively P2 requires that the tag’s output in the first n sessions is independent from
the output of the n+ 1-th session, wrt to the tag’s secret s.

Note that P1 and P2 are incomparable: the first extreme case, π(σi(S0)) = i, sat-
isfies P2 but not P1 while the second extreme case π(σi(S0)) = s satisfies P1 but not
P2. There are two inherently different flaws of π(σi(S0)) that the attacker can exploit:
a dependency on i and a dependency on s. P1 disallows the first while P2 disallows the
second. Together they capture untraceability for single step protocols.

Theorem 2. A single step protocol satisfies untraceability iff it satisfies P1 and P2.

The complete proof is given in the appendix. The main part is to show that P1,P2 are
sufficient for untraceability, we only sketch the main idea here. Note that, since the
reader and the backend database are not modelled explicitly, Def 3 is greatly simplified.
It is sufficient to show that Tag(c1, c2) ≈ Tag(c1) | Tag(c2), as we can add ReplTag
using the congruence of≈. The dynamics of these processes is simple and both are able
to perform the same transitions. The challenging part of the proof is to show that the
produced frames are statically equivalent. Assume that n sessions are run on c1 and m
sessions on c2. Then Tag(c1, c2) will produce

νs.
(∏n+m−1

i=0 ρxiπ(σi(S0))
)

since both interfaces are connected to the same tag. Using P2 we can show that this is
statically equivalent to ∏n+m−1

i=0 νs.ρxiπ(σi(S0))

that is, to the same output performed by n + m separate tags. Now we can use P1 to
freely change the exponents of σ, and we get∏n−1

i=0 νs.ρxiπ(σi(S0)) |
∏m−1
j=0 νs.ρxn+jπ(σj(S0))

Finally, we can use P2 again to “join” the tags, and finally obtain:

νs.
(∏n−1

i=0 ρxiπ(σi(S0))
)
| νs.

(∏m−1
j=0 ρxn+jπ(σj(S0))

)
which is exactly the frame produced by Tag(c1) | Tag(c2), consisting of n outputs of
Tag(c1) and m outputs of Tag(c2).

12

Forward privacy. For forward privacy we need to strengthen our conditions, since the
adversary now has an extra capability, namely to reveal the state of a tag. The attacker
might try to link the state to the output of another tag, so we have to ensure that the state
is independent from all previous output. This brings us to the property P3.

Definition 10. A single step protocol satisfies P3 iff

n−1∏
i=0

ρxπ(σi(s)) ⊥s {σ
n(s)/y} ∀n ∈ N

P3 is similar to P2, but instead of requiring that the (n + 1)-th output is independent
from the first n, it requires that the contents of the state after the n-th session is inde-
pendent from the first n outputs. In fact, this is strictly stronger.

Proposition 3. For all single step protocols, P3 ⇒ P2.

We can now state the corresponding result for forward privacy.

Theorem 3. A single step protocol satisfies forward privacy iff it satisfies P1 and P3.

The proof is similar to the one for untraceability. Note that the above theorem together
with Prop. 3 shows that forward privacy implies untraceability for single step protocols,
which was already expected from Prop. 1.

6 Case studies

In this section we apply the results for single step protocols to two existing ones from
the literature. The first is the OSK protocol ([1]), already discussed in the introduction
and formalized in Section 3.1. We also discuss some variations of the protocol, where
we weaken some aspects of the protocol to examine how privacy is affected. Finally we
analyze a basic hash protocol of [9], which falls in the same class even though it is quite
different in spirit that the OSK protocol.

6.1 The OSK protocol

In the OSK protocol [1], tags can compute two distinct hash functions g,h. The state
of each tag is initialized with a randomly generated secret which is also known to the
backend. On each run, the tag computes the hash g of its current state and sends it
to the reader. Then it computes the hash h of its current state, and updates the state
with the result. As a consequence, the output of the i-th run of a tag is g(hi−1(s))
where s is the initial secret. The backend knows the secret of all tags, so it can compute
g(hi−1(s)) for all secrets and thus identify the tag. For efficiency, the backend can
precompute the expected output for the next run of all tags, and perform a fast search
during identification. Once the tag is identified, its expected output can be updated.

The OSK protocol can be modelled as a single-step protocol (Def. 7) with:

S0 = s π(x) = g(x) σ(x) = h(x) ρ̃ = ε

Thus, proving forward privacy for OSK reduces to proving the properties P1,P3.

13

Proposition 4. The OSK protocol satisfies properties P1,P3, namely:

P1 νs.{g(hn(s))/x} ≈s νs.{g(hm(s))/x} ∀n,m ∈ N

P3

∏n−1
i=0 {g(hi(s))/xi} ⊥s {h

n(s)/y} ∀n ∈ N

The challenging proof is the one of P3 which follows from Theorem 1, since for all
i < n no subterm of g(hi(s)) is equal to hn(s) and vice versa. Then by Theorem 3 we
conclude that OSK satisfies forward privacy (and as a consequence also untraceability).

Note that proving P1,P3 involves proving an infinite number of static equivalences.
However, each one of them can be proven automatically using the ProVerif tool ([10]).
Proving these equivalences up to a fixed n corresponds to proving forward privacy up
to a fixed number of tag sessions. We used ProVerif successfully to prove the above
equivalences for up to 1000 sessions, which only took a few minutes. On the other hand,
even though ProVerif is capable of automatically proving observational equivalence in
some cases ([11]), it was unable to directly prove forward privacy using the Def. 4.

Weak OSK protocol. We might ask the question of whether both hash functions of
OSK are needed. We examine here the effects of relaxing the conditions on h,g. First
consider the case where h is not one-way, that is there exists a function invh and an
equation invh(h(x)) =E x. Intuitively, this breaks forward privacy since from hn(s)
the attacker can compute s which can be then used to link past sessions to the tag.
Indeed, Theorem 1 can be no longer applied to hn(s) and property P3 is violated. On
the other hand, if h(x) = x+1, an invertible function, then property P2 is still satisfied:
Theorem 1 can be applied to show that

∏n−1
i=0 {g(hi(s))/xi} ⊥s {g(hn(s))/xn}. Thus the

protocol satisfies only untraceability.
On the other hand, if the inverse of g exists then both properties are violated. In

this case, given two outputs g(hi(s)) and g(hj(s)) with i < j, the adversary can first
extract hi(s) and hj(s). Then, since h is a public hash function, she can apply it j − i
times to the first value: if it coincides with the second the adversary can conclude that
the outputs belong to the same tag. Indeed, both properties P2,P3 are violated (even
though P1 is still satisfied).

6.2 Basic hash protocol of [9]

The basic hash protocol of [9] is also a single-step protocol, although quite different in
spirit than the OSK protocol. It uses a random number generator and a hash function
h. The state of each tag is initialized with a randomly generated secret, known to the
backend, and is never updated. Instead, on each run a tag generates a fresh nonce r
and computes the hash h(s, r) of its secret together with r. Finally it outputs the pair
(r,h(s, r)). The backend computes h(s, r) for all known tags, and compares it with the
given value to identify the tag.

The simple hash protocol can be modelled as a single-step protocol (Def. 7) with:

S0 = s π(x) = (r,h(x, r)) σ(x) = x ρ̃ = r

Then we can prove untraceability by proving the properties P1,P2.

14

Proposition 5. The simple hash protocol satisfies properties P1,P2, namely

P1 νs.νr.{(r,h(s,r))/x} ≈s νs.νr.{(r,h(s,r))/x}

P2

∏n−1
i=0 νr.{(r,h(s,r))/xi} ⊥s νr.{(r,h(s,r))/xn} ∀n ∈ N

P1 follows trivially from the reflexivity of ≈s. For P2 we can use Theorem 1 together
with Prop. 2. Similarly to OSK, each one of the infinite equivalences that we need to
show can be proven automatically by ProVerif.

Thus, by Theorem 2, we conclude that the protocol satisfies untraceability. On the
other hand, forward privacy is intuitively violated. Tampering the tag the attacker ob-
tains s which can be then used to link any previous session. Indeed, P3 is clearly not
satisfied.

7 Related and future work

Related work. Several papers ([4, 1, 5, 12, 6, 13, 14]) analyze privacy properties for
RFID systems, in various levels of formality. All of them, however, define privacy in a
computational setting, typically in terms of games. Our work, on the other hand, takes
place in a symbolic setting using the formal language of the applied pi calculus. In Sec-
tion 3 we briefly describe two types of untraceability games found in the literature and
explain that the spirit of our definition is comparable to them. The advantage of using a
symbolic model is the clarity of the models and definitions that a formal language pro-
vides, the rigorousness of the proofs and the possibility of automatic verification using
tools like ProVerif ([10]). On the other hand, a symbolic analysis might miss attacks
that exploit weaknesses of the cryptographic primitives.

The work that is closest to ours is the one of Arapinis et al., who independently
developed a definition of untraceability in the applied pi calculus. In their recently pub-
lished paper ([15]), they define the properties of strong and weak untraceability. The
former is a strong property requiring that the RFID system is equivalent to one where
each tag executes only one session. This is possible because in their model, the attacker
cannot choose which tag to communicate with, instead she might get a response from
any tag. In our model, however, a tag interface always corresponds to the same tag, thus
it is impossible to satisfy such a property, unless a different interpretation is given to
“single session”. Weak untraceability, on the other hand, bears some similarities to our
definition of untraceability, but also several differences. In general, [15] provides inter-
esting alternatives to our definitions, hence we plan to investigate their relation in the
near future. Note also that our work provides several results that are outside the scope
of [15] which, being a short paper, only states the definitions.

Finally, Deursen et al ([16]) also define untraceability in a symbolic setting. Their
model and definitions, however, are quite different than ours, defined in terms of traces.

Future work. There are various directions for future work. Defining the notion of self-
stabilizing backwards privacy from [17] is a natural extension of our definition of for-
ward privacy. Moreover, we plan to give general results for classes wider than the one
of single step protocols, allowing the tag to receive input from the reader. We also aim

15

at automatic verification, using the ProVerif tool (already used in Section 6 in a limited
setting). Finally, we plan at studying the relation of our work to the definitions of [15].

References

1. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic Approach to “Privacy-Friendly” Tags.
In: RFID Privacy Workshop, MIT, Massachusetts, USA (2003)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication (2001)
3. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I and II. Information and

Computation 100 (1989)
4. Juels, A., Weis, S.: Defining Strong Privacy for RFID. In: International Conference on

Pervasive Computing and Communications – PerCom 2007, New York City, New York,
USA, IEEE, IEEE Computer Society Press (2007) 342–347

5. Avoine, G.: Adversary Model for Radio Frequency Identification. Technical Report LASEC-
REPORT-2005-001, Swiss Federal Institute of Technology (EPFL), Security and Cryptogra-
phy Laboratory (LASEC), Lausanne, Switzerland (2005)

6. Ouafi, K., Phan, R.C.W.: Privacy of Recent RFID Authentication Protocols. In: 4th Interna-
tional Conference on Information Security Practice and Experience – ISPEC 2008. Volume
4991 of Lecture Notes in Computer Science., Sydney, Australia, Springer (2008) 263–277

7. Chatmon, C., van Le, T., Burmester, M.: Secure Anonymous RFID Authentication Protocols.
Technical Report TR-060112, Florida State University, Department of Computer Science,
Tallahassee, Florida, USA (2006)

8. Nohl, K., Evans, D.: Privacy through Noise: A Design Space for Private Identi?cation. In:
Annual Computer Security Applications Conference (ACSAC 2009). (2009)

9. Weis, S., Sarma, S., Rivest, R., Engels, D.: Security and Privacy Aspects of Low-Cost Radio
Frequency Identification Systems. In Hutter, D., Müller, G., Stephan, W., Ullmann, M., eds.:
International Conference on Security in Pervasive Computing – SPC 2003. Volume 2802 of
Lecture Notes in Computer Science., Boppard, Germany, Springer-Verlag (2003) 454–469

10. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In: CSFW,
IEEE Computer Society (2001) 82–96

11. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: IEEE Symposium
on Security and Privacy, IEEE Computer Society (2004) 86–

12. Avoine, G.: Cryptography in Radio Frequency Identification and Fair Exchange Protocols.
PhD thesis, EPFL, Lausanne, Switzerland (2005)

13. Burmester, M., Le, T.v., Medeiros, B.d.: Provably Secure Ubiquitous Systems: Universally
Composable RFID Authentication Protocols. In: Conference on Security and Privacy for
Emerging Areas in Communication Networks – SecureComm, Baltimore, Maryland, USA,
IEEE (2006)

14. Vaudenay, S.: On Privacy Models for RFID. In: Advances in Cryptology - Asiacrypt 2007.
Volume 4833 of Lecture Notes in Computer Science., Kuching, Malaysia, Springer-Verlag
(2007) 68–87

15. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Untraceability in the applied pi calculus. In:
proc. of the 1st Int. Workshop on RFID Security and Cryptography. (2009) To appear.

16. van Deursen, T., Mauw, S., Radomirovic, S.: Untraceability of rfid protocols. In: Information
Security Theory and Practices. Smart Devices, Convergence and Next Generation Networks.
Volume 5019. 5019 of Lecture Notes in Computer Science., Springer (2008) 115

17. Garcia, F.D., van Rossum, P.: Modeling Privacy for Off-line RFID Systems. In: Workshop
on RFID Security – RFIDSec’09, Leuven, Belgium (2009)

16

A Proofs

Proposition 1 Forward privacy (Def 4) implies untraceability (Def 3).

Proof. The idea is that the processes in the definition of forward privacy are the same
as the ones of untraceability with the addition of the action br. By restricting br we can
retrieve the definition of untraceability.

Assume that forward privacy holds. We restrict the name br and from the congru-
ence of ≈ we get

νbr.νñ.(BrTag(c1, c2) | ReplTag | Reader | DB) ≈
νbr.νñ.(TwoTags(c1, c2) | ReplTag | Reader | DB)

Since νbr.br().X ≈ 0, we have that νbr.BrTag(c1, c2) ≈ Tag(c1, c2) and νbr.TwoTags(c1, c2) ≈
Tag(c1) | Tag(c2), so we conclude that

νñ.(Tag(c1, c2) | ReplTag | Reader | DB) ≈
νñ.(Tag(c1) | Tag(c2) | ReplTag | Reader | DB)

which is the definition of untraceability. ut

Proposition 2 Let ϕ1, ϕ2, ψ be closed frames such that ϕ1 ⊥es ψ. If either of the fol-
lowing holds:

1. ϕ2≈s ϕ1

2. ϕ2 ≡ ϕ1 | ϕ′1 for some frame ϕ′1 with {s̃}∩fn(ϕ′1) = ∅ and dom(ϕ′1)∩dom(ψ) =
∅

3. ϕ2 ≡ νu.ϕ1 for some u /∈ fv(ψ) ∪ fn(ψ)

then ϕ2 ⊥es ψ.

Proof. From ϕ1 ⊥es ψ by definition we get νs̃.(ϕ1 | ψ)≈s νs̃.ϕ1 | νs̃.ψ.

1. Since ≈s is closed under application of closing evalution contexts, we have

νs̃.(ϕ2 | ψ)≈s νs̃.(ϕ1 | ψ)≈s νs̃.ϕ1 | νs̃.ψ≈s νs̃.ϕ2 | νs̃.ψ

thus ϕ2 ⊥es ψ.
2. Note that ϕ2 = ϕ1 | ϕ′1 is closed, so by congruence we get νs̃.(ϕ1 | ψ) | ϕ′1≈s

νs̃.ϕ1 | νs̃.ψ | ϕ′1. Since {s} ∩ fn(ϕ′1) = ∅ and ≈s is closed by ≡, we get
νs̃.(ϕ1 | ϕ′1 | ψ)≈s νs̃.(ϕ1 | ϕ′1) | νs̃.ψ and thus νs̃.(ϕ2 | ψ)≈s νs̃.ϕ2 | νs̃.ψ
which implies ϕ2 ⊥es ψ

3. Again by simple application of the congruence property. ut

Lemma 2. Let ϕ = νñ1.σ1, ψ = νñ2.σ2 be frames in canonical form.

1. If M,N are two terms such that {ñ1} ∩ (fn(M) ∪ fn(N)) = ∅, then (M = N)ϕ
iff Mσ1 = Nσ1.

17

2. If ϕ 6≈s ψ then there exist termsM,N such that {ñ1, ñ2}∩(fn(M)∪fn(N)) = ∅,
Mσ1 = Nσ1 and Mσ2 6= Nσ2.

Lemma 1 Let h be a hash function (Def. 6) and assume that =E does not equate all
terms. Then

1. h is collision-free, that is h(M) =E h(N)⇒M =EN .
2. if h(M) =EN then there exists h(N ′) EN s.t. N ′=EM

3. there is no equation that inverts h, i.e. invh(h(x)) =E x

4. there is no equation that checks a hashed value, i.e. checkh(h(x)) =E ok

Proof. 1. Assume h(M) =E h(N) andM 6=EN . Then by Def. 6 we get h(M)[x/h(=M)] =E

h(N)[x/h(=M)] thus x=E h(N ′) where N ′=EN [x/h(=M)]. Finally by substitut-
ing h(N ′) we get x=E y which is a contradiction.

2. If no such term exists then by substituting h(M) we get x=EN which implies
x=E y.

3. Such equation would imply that invh(z) =E x which again implies x=E y.
4. Such equation would imply that checkh(y) =E ok for all y, not just those of the

form h(x). ut

Depending on the equational theory, there might exist termsM,N such thatM =CN
and N =CM . For example take f(g(a)),g(f(b)) with f(x) = f(y),g(x) = g(y). The
following lemma says that for any sequence of terms, we can replace them with equal
terms and put them in an order such that no term is equal to a subterm of any subsequent
term. In the previous example such terms would be f(g(a)),g(a). The lemma is needed
for the proof of Theorem 1.

Lemma 3. LetM1, . . . ,Ml be terms. There exist termsM ′1, . . . ,M
′
l and a permutation

π of {1, . . . , l} such that M ′i = Mi, 1 ≤ i ≤ l and

M ′π(i) 6=C M ′π(j) ∀1 ≤ i ≤ j ≤ l

Theorem 1 Let h1, . . . ,hk,g1, . . . ,gl be hash functions (Def. 6), not necessarily dis-
tinct, and let

ϕ1 = {h1(S1)/x1 , . . . ,
hk(Sk)/xk} ϕ2 = {g1(T1)/y1 , . . . ,

gl(Tl)/yl}

be frames in canonical form. Assume that hi(Si) 6=E gj(Tj) and gj(Tj) 6=E hi(Si) for
all 1 ≤ i ≤ l, 1 ≤ j ≤ m. Then ϕ1 ⊥s ϕ2 for all names s.

Proof. We begin by making some assumptions, without loss of generality. Let σi1 be the
same as ϕ1 with xi removed. First, we assume that no hi(Si) is redundant in the sense
that there is no term M with fn(M) ∩ {s} = ∅ such that Mσi = hi(Si). Otherwise
we have that ϕ1 ≡ σi1 | {M/xi}, so we can apply this theorem to σi1 and use Lemma 2

18

to extend it to ϕ1. Similarly for gj(Tj). Then we assume that there exist permutations
π, ρ such that

hπi(Sπi) 6=C hπj (Sπj) ∀1 ≤ i ≤ j ≤ l (1)
gρi(Tρi) 6=C gρj (Tρj) ∀1 ≤ i ≤ j ≤ m (2)

Otherwise, by Lemma 3 we can find M1, . . . ,Mk such that Mi = hi(Si) 1 ≤ i ≤ l,
and a permutation with the desired property. Then we can create a frame ϕ′1 from ϕ1 by
replacing hi(Si) by Mi and apply the theorem to ϕ′1, since ϕ1≈s ϕ

′
1 and by Lemma 2

we have ϕ1 ⊥s ϕ2 ⇔ ϕ′1 ⊥s ϕ2. Note that since Mi = hi(Ti) and Mi 6=C Mi,
we have by Lemma 1 that Mi is of the form hi(M ′i) so the theorem can be applied.
Similarly for (2).

Assume that ϕ1 6⊥s ϕ2, then by definition

νs.(ϕ1 | ϕ2) 6≈s νs.ϕ1 | νs.ϕ2 (3)

Let T ′j = Tj [s
′
/s]. By renaming the second occurrence of s in the right-hand side of (3)

to some s′ /∈ fn(ϕ1) ∪ fn(ϕ2) we get

νs.σ1 6≈s νs.νs
′.σ2 where

σ1 = {h1(S1)/x1 , . . . ,
hn(Sn)/xn ,

g1(T1)/y1 , . . . ,
gl(Tl)/yl}

σ2 = {h1(S1)/x1 , . . . ,
hn(Sn)/xn ,

g1(T
′
1)/y1 , . . . ,

gl(T
′
l)/yl}

Then, by Lemma 2, there exist terms M,N not containing s, s′, such that Mσ1 = Nσ1

but Mσ2 6= Nσ2.
The idea is to first replace gj(Tj) in Mσ1, Nσ1 by xj and then apply σ2 to replace

xj by gj(T ′j). We do the substitutions according to the permutation ρ of (2). This is
to avoid substituting a “part” of a term gj(Tj) when replacing some other gi(Ti). We
want to show that

Mσ1[yi/gρi (=Tρi)]
m
i=1 σ2 = Mσ2 Nσ1[yi/gρi (=Tρi)]

m
i=1 σ2 = Nσ2 (4)

Note that Mσ1,Mσ2 differ only in the terms gj(Tj),gj(T ′j) that are substituted for
yj . However, Mσ1[yj/gj(=Tj)] replaces all subterms equal to gj(Tj), not just those
substituted for yj , so some attention is needed.

The proof of (4) is by induction on the structure of M :

– M is a variable. We have three sub-cases:
• if M = yj then Mσ1 = gj(Tj). Let q be such that ρq = j. Because of (2),

gj(Tj) will remain unaffected by the first q − 1 substitutions, that is

Mσ1[yi/gρi (=Tρi)]
q−1
i=1 = gj(Tj)

Then the q-th substitution will replace gj(Tj) by yj and the remaining sub-
stitutions again will have no effect. Thus Mσ1[yi/gρi (=Tρi)]

m
i=1 = yj and

Mσ1[yi/gρi (=Tρi)]
m
i=1σ2 = gj(T ′j) = Mσ2.

19

• if M = xi then Mσ1 = hi(Si) and since we assume that gj(Tj) 6=E hi(Si),
1 ≤ j ≤ m, we have that hi(Si) remains unaffected by all substitutions, thus
Mσ1[yi/gρi (=Tρi)]

m
i=1σ2 = hi(Si) = Mσ2.

• If M is equal to some other variable z then Mσ1 = z and
Mσ1[yi/gρi (=Tρi)]

m
i=1σ2 = z = Mσ2.

– If M = n for some name n then Mσ1 = n and Mσ1[yi/gρi (=Tρi)]
m
i=1σ2 = n =

Mσ2.
– M = g(M1, . . . ,Mk) with k > 1 or ∀1 ≤ j ≤ m : (g 6= gj or M1σ1 6= Tj). Then

Mσ1[yi/gρi (=Tρi)]
m
i=1σ2 = g(M1σ1[yi/gρi (=Tρi)]

m
i=1σ2, . . . ,Mkσ1[yi/gρi (=Tρi)]

m
i=1σ2)

and the proof follows directly from the induction hypothesis.
– The only remaining case is when M = gj(M ′) with M ′σ1 = Tj . We are going

to show that this case is in fact not possible under the assumptions we have made.
We replace all occurrences of hi(Si) in M ′σ1 by a fresh variable zi, in the order
defined by the permutation π of (2). We also replace gjTj by z. Let

K = M ′σ1[zi/hπi (=Sπi)]
l
i=1[z/gj(=Tj)]

Since hi(Ti) 6=E gj(Tj), Tj is not affected by [zi/hπi (=Sπi)]
l
i=1. Moreover, gj(Tj) 6=E Tj

(from (2)) so Tj is also not affected by [z/gj(=Tj)]. Thus from M ′σ1 = Tj and
Def 6 we get K = Tj and thus gj(K) = gj(Tj). But it is easy to see that K has no
occurrence of s, m̃ except from inside some gk(Tk), k 6= j which contradicts the
assumption that gj(Tj) is not redundant.

Having proven (4), from Mσ1 = Nσ1, Def. 6 and the fact that equations are closed
under substitution, we get Mσ2 = Nσ2 which is a contradiction. ut

Theorem 2 A single step protocol satisfies untraceability iff it satisfies both P1,P2.

Proof. – (P1 ∧ P2 ⇒ untraceability)
Assumptions:
1. P1: νs.ρxπ(σn(s)) ≈s νs.ρxπ(σm(s))∀n,m ∈ N
2. P2:

∏n−1
i=0 ρxiπ(σi(s))⊥sρxnπ(σn(s))∀n ∈ N

We want to prove that:

νw.νs.(!P (w, c1) | !P (w, c2) | St(w, s)) | t〈 〉
≈

νw.νs.(!P (w, c1) | St(w, s)) | νw.νs.(!P (w, c2) | St(w, s)) | t〈 〉

Since it has been proved that observational bisimilarity is equivalent to labelled
bisimilarity (≈l), for the sake of simplicity we use the second approach to prove
the theorem. Moreover we synchronize the processes by means of a token t, so that
it is easier to show the relationship between untraceability and forward privacy for
this class of protocols.
To prove a labelled bisimilarity between processes we have to show that there exists
a relation R on closed extended processes such that ARB implies:

20

1. A ≈s B;
2. if A→ A′, then ∃B′ s.t. B →∗ B′ and A′RB′;
3. if A α→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then ∃B′ s.t.
B →∗ α→→∗ B′ and A′RB′.

For the sake of readability we use the following notation:
• Pi,j = P (wi, cj) = cj().t().wi(x).(νρ.c̄j〈π(x)〉 | St(wi, σ(x)));
• Qi,j = Q(wi, cj) = t().wi(x).(νρ.c̄j〈π(x)〉 | St(wi, σ(x)));
• ψl, ψr1, ψr2 are frames with the following forms:

1. ψl =
∏k+l+1
i=0 ρxiπ(σi(s0))

2. ψr1 =
∏k
i=0 ρxαiπ(σi(s1))

3. ψr2 =
∏l
i=0 ρxβj π(σj(s2))

∀ increasing sequences αi, βj s.t. {αi | 0 ≤ i ≤ k} ∪ {βj | 0 ≤ j ≤ l} =
[0, ..., k + l + 1]

The relation R is the following:

R= {
(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | t〈 〉 | St(w0, σ

k+l+1(s0))),
νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1))) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2))) | t〈 〉),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ
k+l+1(s0)) |

w0(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w0, σ(x)))),
νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1)) |
w1(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w1, σ(x)))) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))),

(νs0, w0.(ψl | !P01 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ
k+l+1(s0)) |

w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x)))),
νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1))) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2))) |
w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x)))),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |
νρ.c̄1

〈
π(σk+l+1(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0))))),

νs1, w1.(ψr1 | !P1,1 | Qn1,1 | νρ.c̄1
〈
π(σk(s1))

〉
.(t〈 〉 |

St(w1, σ(σk(s1))))) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |
νρ.c̄2

〈
π(σk+l+1(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0))))),

νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1))) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | c̄2
〈
π(σl(s2))

〉
.(t〈 〉 | St(w2, σ(σl(s2))))))

s.t. ∀k, l, n,m ∈ N s.t. :
k, l are the numbers of key updates of P1,1 and P2,2 respectively
n,m are the numbers of processes of the form Q1,1 and Q2,2 respectively

21

}

Now we have to show that the relation R is a bisimulation and all its pairs are
statically equivalent.
Cases:
• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | t〈 〉 | St(w0, σ

k+l+1(s0)))
R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1))) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2))) | t〈 〉
The possible transitions for L leads to new forms in which the token synchro-
nizes with Qn0,1 or Qm0,2. In both cases these transitions can be matched by R,
generating a new pair which belongs again to R:
∗ L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn−1

0,1 | Qm0,2 | St(w0, σ
k+l+1(s0)) |

w0(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w0, σ(x))))
R = νs1, w1.(ψr1 | !P1,1 | Qn−1

1,1 | St(w1, σ
k(s1)) |

w1(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w1, σ(x)))) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
∗ L = νs0, w0.(ψl | !P01 | !P0,2 | Qn0,1 | Qm−1

0,2 | St(w0, σ
k+l+1(s0)) |

w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x))))
R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1))) |
νs2, w2.(ψr2 | !P2,2 | Qm−1

2,2 | St(w2, σ
l(s2))) |

w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x)))
• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ

k+l+1(s0)) |
w0(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w0, σ(x))))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1)) |

w1(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w1, σ(x)))) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
L can perform only an internal reduction, namely it can synchronize the input
and output processes, because the token blocks the processes Qn0,1 and Qm0,2.
Again R matches the same reduction and the new processes belong to R:
L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |

νρ.c̄1
〈
π(σk+l+1(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0)))))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | νρ.c̄1
〈
π(σk(s1))

〉
.(t〈 〉 |

St(w1, σ(σk(s1))))) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
• L = νs0, w0.(ψl | !P01 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ

k+l+1(s0)) |
w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x))))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1))) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2))) |

w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x)))
This case is similar to the previous one.

• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |
νρ.c̄1

〈
π(σk+l+1(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0)))))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | νρ.c̄1
〈
π(σk(s1))

〉
.(t〈 〉 |

St(w1, σ(σk(s1))))) | νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2)))

Also in this case,L can perform only a transition, namely it can send π(σk+l+1(s0))

22

on the channel c1. The new pair will be:
L = νs0, w0.(ψ′l | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | t〈 〉 | St(w0, σ(σk+l+1(s0))))
R = νs1, w1.(ψ′r1 | !P1,1 | Qn1,1 | St(w1, σ(σk(s1)))) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2))) | t〈 〉

The first process is equivalent to the L process analyzed in the first case of this
proof. The only difference is in the frame, which is correctly updated adding
a new substitution related to the last output, since k is increased by one; the
substitution does not change the form of the frame. Using the same reasoning
and the structural equivalence it is possible to map the second process to the
corresponding R.

• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |
νρ.c̄2

〈
π(σk+l(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0)))))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1))) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | c̄2
〈
π(σl(s2))

〉
.(t〈 〉 | St(w2, σ(σl(s2)))))

This case is similar to the previous one.
Note that in all the cases we should also consider that the processes L and R might
spawn a copy of Q0,1 and Q1,1 or Q0,2 and Q2,2 respectively. They trivially be-
long to the relation, because they only increase the powers of the corresponding
processes, keeping the same form.
Since the frames in all the pairs are always in the same form, the static equivalence
can be shown proving only that:

νs0.(ψl) ≈s νs1.(ψr1) | νs2.(ψr2)

Note that whenever the property P2 holds, it is possible to split a frame of the form
νs.
∏n
i=0 ρxiπ(σi(s)) in a new frame

∏n
i=0 νs.ρxiπ(σi(s)):

νs.(
∏n−1
i=0 ρxiπ(σi(s)), ρxnπ(σn(s)))

≈s νs.
∏n−1
i=0 ρxiπ(σi(s)) | νs.ρxnπ(σn(s))

≈s νs.
∏n−2
i=0 ρxiπ(σi(s)) | νs.ρxn−1π(σn−1(s)) | νs.ρxnπ(σn(s))

≈s · · ·
≈s

∏n
i=0 νs.ρxiπ(σi(s))

Assuming properties P1 and P2, we can conclude that:

νs0.(ψl) = νs0.
∏k+l+1
i=0 νρxi .π(hi(s0))

≈s
∏k+l+1
i=0 νs0.νρxi .π(σi(s0)) by P2

≈s
∏k
i=0 νs0.νρxαi .π(σi(s0)) |∏l
j=0 νs0.νρxαj .π(σj(s0)) by P1

≈s νs0.
∏k
i=0 νρxαi .π(σi(s0)) |

νs0.
∏l
j=0 νρxαj .π(σj(s0)) by P2

≈s νs1.
∏k
i=0 νρxαi .π(σi(s1)) |

νs2.
∏l
j=0 νρxαj .π(σj(s2)) by α-renaming

= νs1.(psir1) | νs2.(ψr2)

23

∀ increasing sequences αi, βj s.t. {αi | 0 ≤ i ≤ k} ∪ {βj | 0 ≤ j ≤ l} =
[0, ..., k + l + 1] Therefore the equivalence between frames holds.

– (¬(P1 ∧ P2)⇒ ¬ untraceability)
Assumptions: ¬P1 ∨ ¬P2

We want to prove that:

¬(νw.νs.(!P (w, c1) | !P (w, c2) | St(w, s)) | t〈 〉
≈l

νw.νs.(!P (w, c1) | St(w, s)) | νw.νs.(!P (w, c2) | St(w, s)) | t〈 〉)

Cases:
1. (¬P1)

We know that P1 does not hold. This means that exist k and l (k < l) such that:
¬(νs.ρxπ(σk(s)) ≈s νs.ρxπ(σl(s)))

Now the adversary is able to break untraceability querying k times the first
interface, l− k the second, and again the first, obtaining two frames that are no
longer statically equivalent. In fact, the labelled equivalence is broken, since
the frames have two values in correspondence to the same variable that are not
statically equivalent by assumption:
(a) νs0.(ρx0π(s) | . . . | ρxk−1π(σk−1(s)) | ρxkπ(σk(s)) | . . . |

ρxl−1π(σl−1(s)) | ρxlπ(σl(s)))
(b) νs1.(ρx0π(s) | . . . | ρxk−1π(σk−1(s)) | ρxlπ(σk(s))) |

νs2.(ρxkπ(s) | . . . | ρxl−1π(σl−1(s)))
2. (¬P2)

We know that P2 does not hold. This means that exists n such that:
¬(
∏n−1
i=0 ρxiπ(σi(s))⊥sρxnπ(σn(s)))

Cases:
(a) (¬P1)

Untraceability does not hold by (1.).
(b) (P1)

Again we break the frame equivalence querying n times the first interface
and once the second. We obtain the following frames:

i. νs0.(ρx0π(s) | . . . | ρxn−1π(σn−1(s)) | ρxnπ(σn(s)))
ii. νs1.(ρx0π(s) | . . . | ρxn−1π(σn−1(s))) | νs2.ρxnπ(s)
≡ νs1.(ρx0π(s) | . . . | ρxn−1π(σn−1(s))) | νs2.ρxnπ(σn(s)) by P1

By assumption we know that these frames are not statically equivalent, and
this breaks the labelled bisimilarity.

ut

Proposition 3 For all single step protocols, P3 ⇒ P2.

Proof. The intuition is that P3 requires the state content after n runs (σn(S0)) to be
independent from the output of the n runs. P2 requires instead the independence of the
(n + 1)-th output (π(σn(S0))). However, since the only occurrences of the secret s in
the (n+ 1)-th come from σn(S0), it cannot introduce a dependency on s since σn(S0)
is independent.

24

Formally, assuming P3 we have∏n−1
i=0 ρxπ(σi(s)) ⊥s {σ

n(s)/y} ∀n ∈ N

we extend the right-hand side with {π(y)/xn} (note that s /∈ π(y)) and we restrict y.
From Prop. 2 we get∏n−1

i=0 ρxπ(σi(s)) ⊥s νy.
(
{σ

n(s)/y} | {π(σn(s))/xn}
)

∀n ∈ N ⇒∏n−1
i=0 ρxiπ(σi(s)) ⊥s {π(σn(s))/xn} ∀n ∈ N

Finally, since {ρ̃}∩fn(
∏n−1
i=0 ρxiπ(σi(s))) = ∅ we can restrict by Prop. 2 the channels

ρ̃ and get ∏n−1
i=0 ρxiπ(σi(s)) ⊥s ρxnπ(σn(s)) ∀n ∈ N

which is P1. ut

Theorem 3 A single step protocol satisfies forward privacy iff it satisfies P1 and P3.

Proof. – (P1 ∧ P3 ⇒ forward privacy)
Assumptions:
1. P1: νs.ρxπ(σn(s)) ≈s νs.ρxπ(σm(s))∀n,m ∈ N
2. P3:

∏n−1
i=0 ρxiπ(σi(s))⊥s

{
σn(s)/xn

}
∀n ∈ N

We want to prove that:

νw.νs.(!P (w, c1) | !P (w, c2) | St(w, s) | Break(w0)) | t〈 〉
≈

νw.νs.(!P (w, c1) | St(w, s) | Break(w1)) |
νw.νs.(!P (w, c2) | St(w, s)) | t〈 〉

where Break(w) = br().t().w(x).br〈x〉. The method to prove labelled bisimi-
larity and the notation used are the same of the previous section. As in the previ-
ous proof we use labelled bisimilarity to prove the theorem, since it is equivalent
to observational bisimilarity. For the sake of readability we use Break(w) with
two meanings, namely br().t().w(x).br〈x〉 and t().w(x).br〈x〉. The first pro-
cess models the ability of the adversary who can ask for the secret of the first tag;
the process gets the token, reads the secret and publishes it on the public channel
when the adversary can read it. The second process is exactly the same process, but
already triggered and waiting for the token.
The relation R is the following:

R= {
(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | t〈 〉 | St(w0, σ

k+l+1(s0)) | Break(w0)),
νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1)) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2))) | t〈 〉),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ
k+l+1(s0)) | w(x).br〈x〉),

νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1)) | w(x).br〈x〉) |

25

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2)))),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | br〈σk+l+1(s0)〉),
νs1, w1.(ψr1 | !P1,1 | Qn1,1 | br〈σk(s1)〉) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | {σ
k+l+1(s0)/xk+l}),

νs1, w1.(ψr1 | !P1,1 | Qn1,1 | {σ
k(s1)/xk+l}) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2)))),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ
k+l+1(s0)) |

w0(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w0, σ(x))) | Break(w0)),
νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1)) |
w1(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w1, σ(x))) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))),

(νs0, w0.(ψl | !P01 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ
k+l+1(s0)) |

w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x))) | Break(w0)),
νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1)) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2))) |
w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x)))),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |
νρ.c̄1

〈
π(σk+l+1(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0)))) | Break(w0)),

νs1, w1.(ψr1 | !P1,1 | Qn1,1 | νρ.c̄1
〈
π(σk(s1))

〉
.(t〈 〉 |

St(w1, σ(σk(s1)))) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))),

(νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |
νρ.c̄2

〈
π(σk+l+1(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0)))) | Break(w0)),

νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1)) | Break(w1)) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | c̄2
〈
π(σl(s2))

〉
.(t〈 〉 | St(w2, σ(σl(s2))))))

s.t. ∀k, l, n,m ∈ N s.t. :
k, l are the numbers of key updates of P1,1 and P2,2 respectively
n,m are the numbers of processes of the form Q1,1 and Q2,2 respectively

}

Now we have to show that the relation R is a bisimulation and all its pairs are
statically equivalent.
Cases:
• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | t〈 〉 | St(w0, σ

k+l+1(s0)) | Break(w0))
R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1)) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2))) | t〈 〉
The possible transitions for L leads to new forms in which the token synchro-

26

nizes with Qn0,1, Qm0,2 or Break(w0). In all the cases these transitions can be
matched by R, generating a new pair which belongs again to R:
∗ L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ

k+l+1(s0)) |
w0(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w0, σ(x))) | Break(w0))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1)) |

w1(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w1, σ(x))) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
∗ L = νs0, w0.(ψl | !P01 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ

k+l+1(s0)) |
w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x))) | Break(w0))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1)) | Break(w1)) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2))) |

w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x)))
∗ L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ

k+l+1(s0)) | w(x)0.br〈x〉)
R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1)) | w1(x).br〈x〉) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ

k+l+1(s0)) | w0(x).br〈x〉)
R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1)) | w1(x).br〈x〉) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
Since the token is not available, the only possible transition for L is the com-
munication on the channel w0; this step is matched by R which performs the
communication on the channel w1, obtaining exactly the pair analyzed in the
following case.

• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | br〈σk+l+1(s0)〉)
R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | br〈σk(s1)〉) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2)))

As in the previous case, there is only one possible transition for both L and R,
namely the sending of the secret on the public channel br. After this transition
we obtain the next pair, in which the frames contain also the secret disclosed.

• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | {σ
k+l+1(s0)/xk+l})

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | {σ
k(s1)/xk+l}) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2)))

No transition are possible, since the token is no longer available for any pro-
cess.

• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ
k+l+1(s0)) |

w0(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w0, σ(x))) | Break(w0))
R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ

k(s1)) |
w1(x).νρ.c̄1 〈π(x)〉 .(t〈 〉 | St(w1, σ(x))) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
L can perform only an internal reduction, namely it can synchronize the input
and output processes, because the token blocks the processes Qn0,1 and Qm0,2.
Again R matches the same reduction and the new processes belong to R:
L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |

νρ.c̄1
〈
π(σk+l(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0)))) | Break(w0))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | νρ.c̄1
〈
π(σk(s1))

〉
.(t〈 〉 |

27

St(w1, σ(σk(s1)))) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
• L = νs0, w0.(ψl | !P01 | !P0,2 | Qn0,1 | Qm0,2 | St(w0, σ

k+l+1(s0)) |
w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x))) | Break(w0))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1)) | Break(w1)) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ
l(s2))) |

w2(x).νρ.c̄2 〈π(x)〉 .(t〈 〉 | St(w2, σ(x)))
This case is similar to the previous one.

• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |
νρ.c̄1

〈
π(σk+l(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0)))) | Break(w0))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | νρ.c̄1
〈
π(σk(s1))

〉
.(t〈 〉 |

St(w1, σ(σk(s1)))) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
Also in this case,L can perform only a transition, namely it can send π(σk+l+1(s0))
on the channel c1. The new pair will be:
L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |

νρ.(t〈 〉 | St(w0, σ(σk+l+1(s0)))) | Break(w0))
R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | νρ.(t〈 〉 |

St(w1, σ(σk(s1)))) | Break(w1)) |
νs2, w2.(ψr2 | !P2,2 | Qm2,2 | St(w2, σ

l(s2)))
The first process is equivalent to the L process analyzed in the first case of this
proof. The only difference is in the frame, which is correctly updated adding
a new substitution related to the last output, since k is increased by one; the
substitution does not change the form of the frame. Using the same reasoning
and the structural equivalence it is possible to map the second process to the
corresponding R.

• L = νs0, w0.(ψl | !P0,1 | !P0,2 | Qn0,1 | Qm0,2 |
νρ.c̄2

〈
π(σk+l+1(s0))

〉
.(t〈 〉 | St(w0, σ(σk+l+1(s0)))) | Break(w0))

R = νs1, w1.(ψr1 | !P1,1 | Qn1,1 | St(w1, σ
k(s1)) | Break(w1)) |

νs2, w2.(ψr2 | !P2,2 | Qm2,2 | c̄2
〈
π(σl(s2))

〉
.(t〈 〉 | St(w2, σ(σl(s2)))))

This case is similar to the previous one.
Note that in all the above cases we should also consider that the processes L and R
might spawn a copy of Q0,1 and Q1,1 or Q0,2 and Q2,2 respectively. They trivially
belong to the relation, because they only increase the powers of the correspond-
ing processes, thus they keep the same form. Moreover, whenever Break(w) =
br().t().w(x).br〈x〉, the process can be triggered becoming t().w(x).br〈x〉, but
again it is in the same form.
All the frames, with the exception of the last one, are in the following form:

νs0.(ψl) ≈s νs1.(ψr1) | νs2.(ψr2)

This equivalence has been proven for the untraceability property using P1 and P2;
in this case we assume P1 and P3, but we know that P3 implies P2, so we can
conclude that the static equivalence holds. Thus we need to prove only the static
equivalence of the last frame:

28

νs0.(ψl | {σ
k+l+1(s0)/xk+l+1}) ≈s νs1.νρ.({ψr1} | {σ

k(s1)/xk+l}) | νs2.νρ.{ψr2}

This equivalence holds because the property P3 allows us to split the left hand side
of the equivalence in two parts, one with only the secret and one with all the other
substitutions. Then we apply the same steps seen in the proof for the untraceability
property, and finally we merge the first frame and the frame containing the secret
only, and the result is the right hand side of the equation.

– (¬(P1 ∧ P3)⇒ ¬ forward privacy)
Assumptions: ¬P1 ∨ ¬P3

We want to prove that:

¬(νw.νs.(!P (w, c1) | !P (w, c2) | St(w, s)) | t〈 〉
≈l

νw.νs.(!P (w, c1) | St(w, s)) | νw.νs.(!P (w, c2) | St(w, s)) | t〈 〉)

Cases:
1. (¬P1)

See untraceability proof.
2. (¬P3)

We know that P3 does not hold. This means that exists n such that:
¬(
∏n−1
i=0 ρxiπ(σi(s))⊥s

{
σn(s)/xn

}
∀n ∈ N and ∀ secret s)

Cases:
(a) (¬P1)

Forward privacy does not hold by (1).
(b) (P1)

We break the frame equivalence querying n times the first interface and
once the second. We obtain the following frames:

i. νs0.(ρx0π(s) | . . . | ρxn−1π(σn−1(s)) | ρxnσn(s))
ii. νs1.(ρx0π(s) | . . . | ρxn−1π(σn−1(s))) | νs2.ρxnσn(s)
≡ νs1.(ρx0π(s) | . . . | ρxn−1π(σn−1(s))) | νs2.ρxnσn(s) by P1

ByP3 we know that the frames are not statically equivalent, and this breaks
the labelled bisimilarity.

ut

Proposition 4 The OSK protocol satisfies properties P1,P3, namely:

P1 νs.{g(hn(s))/x} ≈s νs.{g(hm(s))/x} ∀n,m ∈ N

P3

∏n−1
i=0 {g(hi(s))/xi} ⊥s {h

n(s)/y} ∀n ∈ N

Proof. P3: h,g are assumed to be one-way hash functions. Then it is easy to see that
for i < n, no subterm of g(hi(s)) is equal to hn(s). This follows from the definition of
hash function and the fact that a subterm of g(hi(s)) contains at most n−1 occurrences
of h. Similarly no subterm of hn(s) is equal to g(hi(s)) since it does not contain g.
Then P3 follows directly from Theorem 1. ut

29

Proposition 5 The simple hash protocol satisfies properties P1,P2, namely

P1 νs.νr.{(r,h(s,r))/x} ≈s νs.νr.{(r,h(s,r))/x}

P2

∏n−1
i=0 νr.{(r,h(s,r))/xi} ⊥s νr.{(r,h(s,r))/xn} ∀n ∈ N

Proof. P1 is trivial by reflexivity of ≈s.
For P2, let r1, . . . , rn be distinct channels. Since h(s, ri) 6=E h(s, rj) for i 6= j, we

have by Theorem 1 that ∏n−1
i=0 {h(s,ri)/yi} ⊥s {h(s,rn)/yn}

We now have h(s, ri) in the exported terms, but we need (ri,h(s, ri)). For this, we
extend the left-hand side with

∏n−1
i=0 {(ri,yi)/xi} and we restrict the yi’s. Similarly we

extend the right-hand side with {(rn,yn)/xn} and we restrict yn. Thus from Prop 2 we
get ∏n−1

i=0 {(ri,h(s,ri))/xi} ⊥s {(rn,h(s,rn))/xn}

Finally, again by Prop 2, we can restrict r1, . . . , rn and α-rename all frames to get∏n−1
i=0 νr.{(r,h(s,r))/xi} ⊥s νr.{(r,h(s,r))/xn}

which is P2. ut

30

